Skip to main content
Log in

High-order harmonic generation from solids using Houston States

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The Houston states (Krieger and Iafrate in Phys Rev B 33: 5494 1986), which are instantaneous eigenstates of the time-dependent Hamiltonian, are known as an appropriate basis function to observe the role of each band in high-order harmonic generation (HHG) in solids. However, due to the sharp blow-up of the transition matrix elements between the Houston states (Wu et al. in Phys Rev A 91: 043839 2015), the Houston state treatment is known to be highly numerically unstable if more than two conduction bands are included. We develop a smooth variable discretization (SVD) method with Houston states by exploiting the fact that the wave function varies smoothly in time to solve the time-dependent Schrödinger equation (TDSE) for a solid exposed to a strong laser field. We demonstrate that the SVD method with the Houston states is numerically stable and can avoid the blow-up. Using the SVD method with the Houston states, we investigate the role of each band for the multiple plateau structure in HHG, and we find that strongly coupled bands should be treated as a whole and that the traditional classification of the currents into interband and intraband currents is not a suitable way to understand the plateaus in the HHG spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.C. Yost, T.R. Schibli, J. Ye, J.L. Tate, J. Hostetter, M.B. Gaarde, K.J. Schafer, Nat. Phys. 5, 815 (2009)

    Article  Google Scholar 

  2. E.P. Power, A.M. March, F. Catoire, E. Sistrunk, K. Krushelnick, P. Agostini, L.F. DiMauro, Nat. Photon 4, 352 (2010)

    Article  ADS  Google Scholar 

  3. S. Ghimire, A.D. DiChiara, E. Sistrunk, P. Agostini, L.F. DiMauro, D.A. Reis, Nat. Phys. 7, 138 (2010)

    Article  Google Scholar 

  4. S. Ghimire, A.D. DiChiara, E. Sistrunk, U.B. Szafruga, P. Agostini, L.F. DiMauro, D.A. Reis, Phys. Rev. Lett. 107, 167407 (2011)

    Article  ADS  Google Scholar 

  5. B. Zaks, R.B. Liu, M.S. Sherwin, Nature 483, 580 (2012)

    Article  ADS  Google Scholar 

  6. O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S.W. Koch, R. Huber, Nat. Photon 8, 119 (2014)

    Article  ADS  Google Scholar 

  7. G. Vampa, T.J. Hammond, N. Thiré, B.E. Schmidt, F. Légaré, C.R. McDonald, T. Brabec, P.B. Corkum, Nature 522, 462 (2015)

    Article  ADS  Google Scholar 

  8. J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J.C. Kieffer, P.B. Corkum, D.M. Villeneuve, Nature 432, 867 (2004)

    Article  ADS  Google Scholar 

  9. S. Baker, J.S. Robinson, C.A. Haworth, H. Teng, R.A. Smith, C.C. Chirilă, M. Lein, J.W.G. Tisch, J.P. Marangos, Science 312, 424 (2006)

    Article  ADS  Google Scholar 

  10. O. Smirnova, Y. Mairesse, S. Patchkovskii, N. Dudovich, D. Villeneuve, P. Corkum, M.Y. Ivanov, Nature 460, 972 (2009)

    Article  ADS  Google Scholar 

  11. H.J. Wörner, J.B. Bertrand, B. Fabre, J. Higuet, H. Ruf, A. Dubrouil, S. Patchkovskii, M. Spanner, Y. Mairesse, V. Blanchet, E. Mével, E. Constant, P.B. Corkum, D.M. Villeneuve, Science 334, 208 (2011)

    Article  ADS  Google Scholar 

  12. G. Ndabashimiye, S. Ghimire, M. Wu, D.A. Browne, K.J. Schafer, M.B. Gaarde, D.A. Reis, Nature 534, 520 (2016)

    Article  ADS  Google Scholar 

  13. T.-Y. Du, Z. Guan, X.-X. Zhou, X.-B. Bian, Phys. Rev. A 94, 023419 (2016)

    Article  ADS  Google Scholar 

  14. M. Wu, S. Ghimire, D.A. Reis, K.J. Schafer, M.B. Gaarde, Phys. Rev. A 91, 043839 (2015)

    Article  ADS  Google Scholar 

  15. M. Wu, D.A. Browne, K.J. Schafer, M.B. Gaarde, Phys. Rev. A 94, 063403 (2016)

    Article  ADS  Google Scholar 

  16. C.R. McDonald, G. Vampa, G. Orlando, P.B. Corkum, T. Brabec, J. Phys. Conf. Ser. 594, 012021 (2015)

    Article  Google Scholar 

  17. P.G. Hawkins, M.Y. Ivanov, V.S. Yakovlev, Phys. Rev. A 91, 013405 (2015)

    Article  ADS  Google Scholar 

  18. T. Ikemachi, Y. Shinohara, T. Sato, J. Yumoto, M. Kuwata-Gonokami, K.L. Ishikawa, Phys. Rev. A 95, 043416 (2017)

    Article  ADS  Google Scholar 

  19. G. Vampa, C.R. McDonald, G. Orlando, D.D. Klug, P.B. Corkum, T. Brabec, Phys. Rev. Lett. 113, 073901 (2014)

    Article  ADS  Google Scholar 

  20. W.V. Houston, Phys. Rev. 57, 184 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  21. J.B. Krieger, G.J. Iafrate, Phys. Rev. B 33, 5494 (1986)

    Article  ADS  Google Scholar 

  22. Z. Guan, X.-X. Zhou, X.-B. Bian, Phys. Rev. A 93, 033852 (2016)

    Article  ADS  Google Scholar 

  23. X. Liu, X. Zhu, P. Lan, X. Zhang, D. Wang, Q. Zhang, P. Lu, Phys. Rev. A 95, 063419 (2017)

    Article  ADS  Google Scholar 

  24. T.-Y. Du, D. Tang, X.-H. Huang, X.-B. Bian, Phys. Rev. A 97, 043413 (2018)

    Article  ADS  Google Scholar 

  25. H. Bachau, E. Cormier, P. Decleva, J.E. Hansen, F. Martín, Rep. Prog. Phys. 64, 1815 (2001)

    Article  ADS  Google Scholar 

  26. O.I. Tolstikhin, S. Watanabe, M. Matsuzawa, J. Phy. B 29, L389 (1996)

    Article  ADS  Google Scholar 

  27. D. Kato, S. Watanabe, Phys. Rev. A 56, 3687 (1997)

    Article  ADS  Google Scholar 

  28. F.D. Colavecchia, F. Mrugala, G.A. Parker, R.T. Pack, J. Chem. Phys. 118, 10387 (2003)

    Article  ADS  Google Scholar 

  29. C.-N. Liu, A.-T. Le, T. Morishita, B.D. Esry, C.D. Lin, Phys. Rev. A 67, 052705 (2003)

    Article  ADS  Google Scholar 

  30. X. Guan, X.-M. Tong, S.-I. Chu, Phys. Rev. A 73, 023403 (2006)

    Article  ADS  Google Scholar 

  31. J. Blandon, V. Kokoouline, F. Masnou-Seeuws, Phys. Rev. A 75, 042508 (2007)

    Article  ADS  Google Scholar 

  32. M.-H. Lee, C.W. Byun, N.N. Choi, G. Tanner, Phys. Rev. A 81, 043419 (2010)

    Article  ADS  Google Scholar 

  33. F. Bloch, Z. Phys. 52, 555 (1928)

    Article  ADS  Google Scholar 

  34. M. Baer, G. Drolshagen, J.P. Toennies, J. Chem. Phys. 73, 1690 (1980)

    Article  ADS  Google Scholar 

  35. A.D. Bandrauk, H. Shen, J. Chem. Phys. 99, 1185 (1993)

    Article  ADS  Google Scholar 

  36. T. Hartmann, F. Keck, H.J. Korsch, S. Mossmann, New J. Phys. 6, 2 (2004)

    Article  ADS  Google Scholar 

  37. B.M. Breid, D. Witthaut, H.J. Korsch, New J. Phys. 8, 110 (2006)

    Article  ADS  Google Scholar 

  38. R. Chang, S. Potnis, R. Ramos, C. Zhuang, M. Hallaji, A. Hayat, F. Duque-Gomez, J.E. Sipe, A.M. Steinberg, Phys. Rev. Lett. 112, 170404 (2014)

    Article  ADS  Google Scholar 

  39. M. Korbman, S.Y. Kruchinin, V.S. Yakovlev, New J. Phys. 15, 013006 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by Kumoh National Institute of Technology (2018-104-013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Ho Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we will show that \({\mathbf{T}}^{-1} \varvec{\varepsilon } {\mathbf{T}}\), appearing in Eq. (21), changes smoothly in time t. For simplicity, let us introduce the following notations: \(|\bar{u}_m \rangle = | u_{m k(\bar{t})} \rangle\) and \(|{u}_n \rangle = | u_{n k(t)} \rangle\). Using the identity \(\sum _m | \bar{u}_m \rangle \langle \bar{u}_{m} | = I\) and the relation \(\sum _{m} \langle u_m | \bar{u}_m \rangle \langle \bar{u}_{m} | u_{n'} \rangle = \delta _{nn'}\), we find that \(\mathbf{T}^{-1} = \bar{\mathbf{T}}\) where \(\bar{T}_{mn} = \langle \bar{u}_m| u_n\rangle\). Then,

$$\begin{aligned} \left( {\mathbf{T}}^{-1} \varvec{\varepsilon }(t) {\mathbf{T}}\right) _{mm'}= & {} \left( {{\bar{{\mathbf{T}}}}} \varvec{\varepsilon }(t) {\mathbf{T}}\right) _{mm'} \\= & {} \sum _{n,n'} \langle \bar{u}_m | u_n \rangle \langle u_n | H(t) | u_{n'} \rangle \langle u_{n'} | \bar{u}_{m'} \rangle \\= & {} \langle \bar{u}_m | H(t) | \bar{u}_{m'} \rangle , \end{aligned}$$

where we have used \(\sum _n | u_n \rangle \langle u_{n} | = I\) and \(\langle u_n|H(t)| u_{n'}\rangle = \varepsilon _n(t) \delta _{nn'}\). Expressing H(t) in terms of \(H(\bar{t})\) as \(H(t) = H(\bar{t}) + (H(t) - H(\bar{t}))\) and using \(H(t) - H(\bar{t}) = \left[ k(t) - k(\bar{t}) \right] p + \frac{1}{2} \left[ k^2(t) - k^2(\bar{t}) \right] ,\) we can obtain

$$\begin{aligned} \left( {\mathbf{T}}^{-1} \varvec{\varepsilon }(t) {\mathbf{T}}\right) _{mm'}= & {} \varepsilon _m(\bar{t}) \delta _{mm'} + + \left[ k(t) - k(\bar{t}) \right] \langle \bar{u}_m | p | \bar{u}_{m'} \rangle \\&+ \frac{1}{2} \big [ k^2(t) - k^2(\bar{t}) \big ] \delta _{mm'}. \end{aligned}$$

Because \(\langle \bar{u}_m | p | \bar{u}_{m'} \rangle\) is evaluated at time \(\bar{t}\), it is a constant matrix. Therefore, the time dependence of \(\left( {\mathbf{T}}^{-1} \varvec{\varepsilon } {\mathbf{T}}\right) _{mm'}\) is only through \(\varepsilon _m(\bar{t})\) and k(t). However, \(\varepsilon _m(t)\) and k(t) change smoothly in time t, so we can say that \({\mathbf{T}}^{-1} \varvec{\varepsilon }(t) {\mathbf{T}}\) also changes smoothly in time t.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, C.W., Lee, MH. & Choi, N.N. High-order harmonic generation from solids using Houston States. J. Korean Phys. Soc. 78, 662–670 (2021). https://doi.org/10.1007/s40042-021-00113-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00113-2

Keywords

Navigation