Skip to main content
Log in

Growth and electrical properties of SnS1-xSex (0 ≤ x ≤ 1) single crystals grown using the temperature gradient method

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Tin selenide (SnSe) has attracted much attention due to its record ZT value in both pristine and doped crystals. This issue has renewed interest in the single-crystal form of tin-based chalcogenide compounds which possess the same layered structure as SnSe such as tin sulfide (SnS). Due to their natural abundances and low toxicities, SnSe and SnS can be alloyed at reduced the processing cost while maintaining the favorable electrical properties of SnSe. In this research, using the temperature gradient method, we successfully fabricated single crystals of SnS1-xSex with 0 ≤ x ≤ 1. High-quality crystals were obtained, and the electrical properties of those crystals were investigated. The results showed that the p-type crystals have layered structures with lattice constants changing gradually according to Vegard’s law. The value of the band gap monotonically decreased with increasing Se amount (x). The substitution of Se into S sites results in not only a large increase in the electrical conductivity but also a decrease in the Seebeck coefficient; i.e., the electrical conductivity at room temperature increased from 5 × 10–4 (x = 0) to 5.24 S⋅cm−1 (x = 0.8). The Seebeck coefficient decreased from 1069 in SnS to 525 μVK−1 in SnS0.2Se0.8 and to 481 μVK−1 in SnSe at room temperature. This work provides positive information for the growth of large-size SnS–SnSe single crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Zhang et al., Adv. Mater. 2002702 (2020).

  2. P. Rudolph (ed.), Handbook of Crystal Growth (Elsevier, Amsterdam, 2015)

  3. T.H. Patel, R. Vaidya, S.G. Patel, Bull. Mater. Sci. 26, 569 (2003)

    Article  Google Scholar 

  4. Z. Tian, C. Guo, M. Zhao, R. Li, J. Xue, ACS Nano 11, 2219 (2017)

    Article  Google Scholar 

  5. S. Yang et al., Nano Res. 11, 554 (2018)

    Article  Google Scholar 

  6. V.R. Minnam Reddy, S. Gedi, B. Pejjai, C. Park, J. Mater. Sci. Mater. Electron. 27, 5491 (2016)

    Article  Google Scholar 

  7. N.K. Reddy, M. Devika, K.R. Gunasekhar, E.S.R. Gopal, NANO 11, 1 (2016)

    Article  Google Scholar 

  8. L. Zhao et al., Nature 508, 373 (2014)

    Article  ADS  Google Scholar 

  9. C. Chang et al., Science 360, 778 (2018)

    Article  Google Scholar 

  10. W. He et al., Science 365, 1418 (2019)

    Article  ADS  Google Scholar 

  11. W. He et al., J. Mater. Chem. A 6, 10048 (2018)

    Article  Google Scholar 

  12. A.T. Duong et al., Nat. Commun. 7, 13713 (2016)

    Article  ADS  Google Scholar 

  13. B.-Z. Sun, Z. Ma, C. He, K. Wu, RSC Adv. 5, 56382 (2015)

    Article  ADS  Google Scholar 

  14. S.H. Chaki, M.D. Chaudhary, M.P. Deshpande, Mater. Res. Bull. 63, 173 (2015)

    Article  Google Scholar 

  15. T.H. Patel, R. Vaidya, S.G. Patel, High Press. Res. 23, 417 (2003)

    Article  ADS  Google Scholar 

  16. H. Wu et al., Adv. Energy Mater. 8, 1800087 (2018)

    Article  ADS  Google Scholar 

  17. S. Wang et al., Appl. Phys. Lett. 112, 142102 (2018)

    Article  ADS  Google Scholar 

  18. K. Peng et al., Mater. Today 21, 501 (2018)

    Article  Google Scholar 

  19. V.Q. Nguyen, J. Kim, S. Cho, J. Korean Phys. Soc. 72, 841 (2018)

    Article  ADS  Google Scholar 

  20. T.T. Ly et al., Phys. Chem. Chem. Phys. 19, 21648 (2017)

    Article  Google Scholar 

  21. H. Wei et al., J. Mater. Chem. 21, 12605 (2011)

    Article  Google Scholar 

  22. R. Car, G. Ciucci, L. Quartapelle, Phys. Status Solidi 86, 471 (1978)

    Article  Google Scholar 

  23. Q. Zhao et al., J. Solid State Chem. 273, 85 (2019)

    Article  ADS  Google Scholar 

  24. Y.-M. Han et al., J. Mater. Chem. A 3, 4555 (2015)

    Article  Google Scholar 

  25. T. Sriv et al., Sci. Rep. 10, 11761 (2020)

    Article  ADS  Google Scholar 

  26. Asfandiyar et al., Sci. Rep. 7, 43262 (2017)

    Article  ADS  Google Scholar 

  27. G. Duvjir et al., Appl. Phys. Lett. 110, 262106 (2017)

    Article  ADS  Google Scholar 

  28. J. Vidal et al., Appl. Phys. Lett. 100, 032104 (2012)

    Article  ADS  Google Scholar 

  29. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008)

    Article  ADS  Google Scholar 

  30. F. Serrano-Sánchez et al., Appl. Phys. Lett. 106, 083902 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by 2019 Research Fund of University of Ulsan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunglae Cho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.M.H., Van Nguyen, Q., Duong, A.T. et al. Growth and electrical properties of SnS1-xSex (0 ≤ x ≤ 1) single crystals grown using the temperature gradient method. J. Korean Phys. Soc. 78, 1095–1100 (2021). https://doi.org/10.1007/s40042-021-00100-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00100-7

Keywords

Navigation