Skip to main content
Log in

Synthesis of nanograined ZnO nanorods functionalized with NiO nanoparticles and their enhanced hydrogen sensing properties

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

NiO nanoparticle (NP)-functionalized nanograined ZnO nanorods (NRs) were grown by using the thermal evaporation of ZnSe powders; this was followed by the thermal oxidation of the ZnSe NRs to synthesize ZnO NRs and a solvothermal process for NiO functionalization. The diameters of the grains in the synthesized nanograined ZnO NRs are in the range of 50–150 nm. The ZnO grains were not spherical, but they were shaped like rice grains. The diameters and the lengths of the ZnO NRs were in the range of 40–50 nm and 1–6 µm, respectively. The diameters of the NiO NPs were in the range of 40–80 nm. A multiple-networked chemiresistive sensor was fabricated by pouring the IPA solution containing NiO NP-decorated nanograined ZnO NRs onto SiO2/Si substrates with a patterned electrode. A pristine nanograined ZnO NR sensor was also prepared in a similar manner. The NiO NP-functionalized nanograined ZnO NR sensor exhibited a greater and faster response to H2, as compared to its pristine nanograined ZnO counterpart; it also showed higher selectivity toward H2 against other reducing gases, as compared to the pristine nanograined ZnO counterpart. Herein, the origin of the enhanced sensing performance of the NiO NP-functionalized nanograined ZnO sensor is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Tamaki, T. Maekawa, N. Miura, N. Yamazoe, Sens. Actuators B- Chem. 9, 197 (1992)

    Article  Google Scholar 

  2. N. Nakagawa, N. Yamamoto, S. Okazaki, T. Chinzei, S. Asakura, Sens. Actuators B Chem. 93, 468 (2003)

    Article  Google Scholar 

  3. K. Skucha, Z. Fan, K. Jeon, A. Javey, B. Boser, Sens. Actuators B-Chem. 145, 232 (2010)

    Article  Google Scholar 

  4. H. Gu, Z. Wang, Y. Hu, Sensors 12, 5517 (2012)

    Article  Google Scholar 

  5. S. Park, S. Park, S. Lee, H.W. Kim, C. Lee, Sens. Actuators B 202, 840 (2014)

    Article  Google Scholar 

  6. J.H. Pan, S.Y. Chail, C. Lee, S.E. Park, W.I. Lee, J. Phys. Chem. C. 111, 5582 (2007)

    Article  Google Scholar 

  7. S. Park, S. An, H. Ko, C. Jin, C. Lee, A.C.S. Appl, Mater. Interfaces 4, 3650S (2012)

    Article  Google Scholar 

  8. C.C. Li, Z.F. Du, L.M. Li, H.C. Yu, Q. Wan, T.H. Wang, Appl. Phys. Lett. 91, 032101 (2007)

    Article  ADS  Google Scholar 

  9. M.S. Hwang, C. Lee, Mater. Sci. Eng. B Adv. 75, 24 (2000)

    Article  Google Scholar 

  10. J.F. Chang, H.H. Kuo, I.C. Leu, M.H. Hon, Sens. Actuators B 84, 258 (2002)

    Article  Google Scholar 

  11. N. Barsan, U. Weimar, J. Electroceram. 7, 143 (2001)

    Article  Google Scholar 

  12. A.R. Raju, C.N.R. Rao, Sens. Actuators B Chem. 3, 305 (1991)

    Article  Google Scholar 

  13. D. Patil, L. Patil, P. Patil, Sens. Actuators B Chem. 126, 368 (2007)

    Article  Google Scholar 

  14. S. Park, H. Ko, S. Kim, C. Lee, A.C.S. Appl, Mater. Interfaces 6, 9595 (2014)

    Article  Google Scholar 

  15. K. Jain, R.P. Pant, S.T. Lakshmikumar, Sens. Actuators B Chem. 113, 823 (2006)

    Article  Google Scholar 

  16. E. Salje, J. Appl. Crystallogr. 7, 615 (1974)

    Article  Google Scholar 

  17. D. Miller, S. Akbar, P. Morris, Sensor. Actuators B Chem. 204, 250 (2014)

    Article  Google Scholar 

  18. L. Xing, S. Yuan, Z. Chen, Y. Chen, X. Xue, Nanotechnology 22, 1 (2011)

    Google Scholar 

  19. X. Xie, Y. Li, Z.Q. Liu, M. Haruta, W. Shen, Nature 458, 746 (2009)

    Article  ADS  Google Scholar 

  20. R.A. Kadir, R.A. Rani, M.M.Y.A. Alsaif, J.Z. Ou, W. Wlodarski, A.P. O’Mullane, K. Kalantar-zadeh, A.C.S. Appl, Mater. Interfaces 7, 4751 (2015)

    Article  Google Scholar 

  21. Z. Wang, Y. Hu, X. Zhang, B. Wang, H. Tian, Y. Wang, J. Guan, H. Gu, Int. J. Hydrog. Energy 37, 4526 (2012)

    Article  Google Scholar 

  22. K. Vijayalakshmin, K. Karthick, D. Gopalakrishna, Ceram. Int. 39, 4749 (2013)

    Article  Google Scholar 

  23. Q.N. Abdullah, F.K. Yama, Z. Hassan, M. Bououdina, J. Colloid Interfaces 460, 135 (2015)

    Article  ADS  Google Scholar 

  24. R.A. Rania, A.S. Zoolfakara, J.Z. Oua, M.R. Field, M. Austina, K.-Z. Kourosh, Sens. Actuators B 176, 149 (2013)

    Article  Google Scholar 

  25. S. Park, G.-J. Sun, H. Kheel, S. Choi, C. Lee, Mater. Res. Bull. 82, 136 (2016)

    Article  Google Scholar 

  26. P. Wadkar, D. Bauskar, P. Patil, Talant 105, 327 (2013)

    Article  Google Scholar 

  27. A. Kaniyoor, R. Imran Jafri, T. Arockiadoss, S. Ramaprabhu, Nanoscale 1, 382 (2009)

    Article  ADS  Google Scholar 

  28. P.G. Su, S.-L. Liao, Mater. Chem. Phys. 170, 180 (2016)

    Article  Google Scholar 

  29. C. Zhang, A.F. Kanta, H. Yin, A. Boudiba, J. D’haen, M.-G. Olivier, M. Debliquy, Int. J. Hydrog. Energy 38, 2929 (2013)

    Article  Google Scholar 

  30. M. Zhang, Y. Zhen, F. Sun, X. Xu, Mater. Sci. Eng. B 209, 37 (2015)

    Article  Google Scholar 

  31. A. Keffous, A. Cheriet, T. Hadjersi, Y. Boukennous, N. Gabouze, A. Boukezzata, Y. Belkacem, M. Kechouane, T. Kerdja, H. Menari, M. Berouaken, L. Talbi, Y. Ouadah, Phys. B 408, 193 (2013)

    Article  ADS  Google Scholar 

  32. M.F.B. Alam, D.T. Phan, G.S. Chung, Mater. Lett. 156, 113 (2015)

    Article  Google Scholar 

  33. M. Zhao, J.X. Huang, C.W. Ong, Sens. Actuators B 191, 711 (2014)

    Article  Google Scholar 

  34. N.V. Duy, T.H. Toan, N.D. Hoa, N.V. Hieu, Int. J. Hydrog. Energy 40, 1272 (2015)

    Google Scholar 

  35. N.V. Toan, N.V. Chien, N.V. Duy, H.S. Hong, H. Nguyen, N.D. Hoa, N.V. Hieu, J. Hazard. Mater. 301, 433 (2016)

    Article  Google Scholar 

  36. Y.-S. Shim, L. Zhang, D.H. Kim, Y.H. Kim, Y.R. Choi, S.H. Nahme, C.-Y. Kang, W. Lee, H.W. Jang, Sens. Actuators B 198, 294 (2014)

    Article  Google Scholar 

  37. P.V. Tong, N.D. Hoa, N.V. Duy, V.V. Quang, N. Lam, N.V. Hieu, Int. J. Hydrog. Energy 38, 12090 (2013)

    Article  Google Scholar 

  38. A. Mirzaei, G.-J. Sun, J.K. Lee, C. Lee, S. Choi, H.W. Kim, Ceram. Int. 43, 5 (2017)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020-056574).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongmu Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, G., Kim, S., Nam, B. et al. Synthesis of nanograined ZnO nanorods functionalized with NiO nanoparticles and their enhanced hydrogen sensing properties. J. Korean Phys. Soc. 78, 259–268 (2021). https://doi.org/10.1007/s40042-021-00064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00064-8

Keywords

Navigation