Skip to main content
Log in

4D Printing for Automotive Industry Applications

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

With the advent of new technologies related to 3D printing and the augmentation of smart materials with 3D printing, 4D printing has emerged as a new technology . The features of 4D printing such as self-assembly, self-repair and multifunctionality have tremendous scope in the automotive industry. This paper is organized in a manner to highlight the various features, compatible materials of 4D printing technology critical for automotive applications. A section on the various critical components used in automotive industry which can be developed by 4D printing is included. Further, a section on how self-healing feature, stimulating mechanism and stimulus-responsive materials can revolutionize the automotive industry particularly from safety and maintenance point of view, is also included. Towards the end the paper the associated challenges and future aspects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Chadha, M.I.U. Haq, A. Raina, R.R. Singh, N.B. Penumarti, M.S. Bishnoi, Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts. World J. Eng. 60, 550–559 (2019)

    Article  Google Scholar 

  2. N. Naveed, Investigate the effects of process parameters on material properties and microstructural changes of 3D-printed specimens using fused deposition modelling (FDM). Mater. Technol. 36(5), 317–330 (2021)

    Article  Google Scholar 

  3. N. Naveed, Investigating the material properties and microstructural changes of fused filament fabricated PLA and tough-PLA parts. Polymers 13(9), 1487 (2021)

    Article  Google Scholar 

  4. A.F. Kichloo, R. Aziz, M.I.U. Haq, A. Raina, Mechanical & physical behaviour of 3D printed polymer nanocomposites-a review. Int. J. Ind. Syst. Eng. 38(4), 2021 (2021). https://doi.org/10.1504/IJISE.2020.10028678

    Article  Google Scholar 

  5. R. Aziz, M.I.U. Haq, A. Raina, Effect of surface texturing on friction behaviour of 3D printed polylactic acid (PLA). Polym. Test. 85, 106434 (2020)

    Article  Google Scholar 

  6. M.I.U. Haq, S. Khuroo, A. Raina, S. Khajuria, M. Javaid, M.F.U. Haq, A. Haleem, 3D printing for development of medical equipment amidst coronavirus (COVID-19) pandemic—review and advancements. Res. Biomed. Eng. 1–11 (2020). https://doi.org/10.1007/s42600-020-00098-0

  7. S. Tibbits, The emergence of “4D printing”. In TED conference (2013, August)

  8. F. Momeni, X. Liu, J. Ni, A review of 4D printing. Mater. Des. 122, 42–79 (2017)

    Article  Google Scholar 

  9. Z.X. Khoo, J.E.M. Teoh, Y. Liu, C.K. Chua, S. Yang, J. An, K.F. Leong, W.Y. Yeong, 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys. Prototyp. 10, 103–122 (2015)

    Article  Google Scholar 

  10. M.P. Chae, D.J. Hunter-Smith, I. De-Silva, S. Tham, R.T. Spychal, W.M. Rozen, Four-dimensional (4D) printing: a new evolution in computed tomography-guided stereolithographic modelling. Principles and application. J. Reconstr. Microsurg. 31(06), 458–463 (2015)

    Article  Google Scholar 

  11. B. Shen, O. Erol, L. Fang, S.H. Kang, Programming the time into 3D printing: current advances and future directions in 4D printing. Multifunct. Mater. 3(1), 012001 (2020)

    Article  Google Scholar 

  12. Y.Y.C. Choong, S. Maleksaeedi, H. Eng, J. Wei, P.C. Su, 4D printing of high performance shape memory polymer using stereolithography. Mater. Des. 126, 219–225 (2017)

    Article  Google Scholar 

  13. M. Javaid, A. Haleem, 4D printing applications in medical field: a brief review. Clin. Epidemiol. Global Health 7(3), 317–321 (2019)

    Article  Google Scholar 

  14. J.W. Boley, W.M. van Rees, C. Lissandrello, M.N. Horenstein, R.L. Truby, A. Kotikian, J.A. Lewis, L. Mahadevan, Shape-shifting structured lattices via multimaterial 4D printing. Proc. Natl. Acad. Sci. 116(42), 20856–20862 (2019)

    Article  Google Scholar 

  15. D.G. Shin, T.H. Kim, D.E. Kim, Review of 4D printing materials and their properties. Int. J. Precis. Eng. Manuf. Green Tech. 4(3), 349–357 (2017)

    Article  Google Scholar 

  16. C. Zhang, X. Lu, G. Fei, Z. Wang, H. Xia, Y. Zhao, 4D printing of a liquid crystal elastomer with a controllable orientation gradient. ACS Appl. Mater. Interfaces. 11(47), 44774–44782 (2019)

    Article  Google Scholar 

  17. L.T. de Haan, J.M. Verjans, D.J. Broer, C.W. Bastiaansen, A.P. Schenning, Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl. J. Am. Chem. Soc. 136(30), 10585–10588 (2014)

    Article  Google Scholar 

  18. A.S. Gladman, E.A. Matsumoto, R.G. Nuzzo, L. Mahadevan, J.A. Lewis, Biomimetic 4D printing. Nat. Mater. 15(4), 413–418 (2016)

    Article  Google Scholar 

  19. Y. Zhang, Q. Liu, B. Xu, Self-folding mechanics of surface wettability patterned graphene nanoribbons by liquid evaporation. J. Appl. Mech., 85(2) (2018)

  20. K. Zhang, A. Geissler, M. Standhardt, S. Mehlhase, M. Gallei, L. Chen, C.M. Thiele, Moisture-responsive films of cellulose stearoyl esters showing reversible shape transitions. Sci. Rep. 5(1), 1–13 (2015)

    Google Scholar 

  21. T. van Manen, S. Janbaz, A.A. Zadpoor, Programming the shape-shifting of flat soft matter. Mater. Today 21(2), 144–163 (2018)

    Article  Google Scholar 

  22. J. Guo, R. Zhang, L. Zhang, X. Cao, 4D printing of robust hydrogels consisted of agarose nanofibers and polyacrylamide. ACS Macro Lett. 7(4), 442–446 (2018)

    Article  Google Scholar 

  23. H.Y. Jeong, B.H. Woo, N. Kim, Y.C. Jun, Multicolor 4D printing of shape-memory polymers for light-induced selective heating and remote actuation. Sci. Rep. 10(1), 1–11 (2020)

    Article  Google Scholar 

  24. H. Li, Z. Yuan, K.Y. Lam, H.P. Lee, J. Chen, J. Hanes, J. Fu, Model development and numerical simulation of electric-stimulus-responsive hydrogels subject to an externally applied electric field. Biosens. Bioelectron. 19(9), 1097–1107 (2004)

    Article  Google Scholar 

  25. C.A. Martin, J.K.W. Sandler, A.H. Windle, M.K. Schwarz, W. Bauhofer, K. Schulte, M.S.P. Shaffer, Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46(3), 877–886 (2005)

    Article  Google Scholar 

  26. A. Miriyev, K. Stack, H. Lipson, Soft material for soft actuators. Nat. Commun. 8(1), 1–8 (2017)

    Article  Google Scholar 

  27. T. Li, G. Li, Y. Liang, T. Cheng, J. Dai, X. Yang, W. Yang, Fast-moving soft electronic fish. Sci. Adv. 3(4), e1602045 (2017)

    Article  Google Scholar 

  28. S. Faehler, An introduction to actuation mechanisms of Magnetic Shape Memory Alloys. ECS Trans. 3(25), 155 (2007)

    Article  Google Scholar 

  29. D.I. Paul, W. McGehee, R.C. O’Handley, M. Richard, Ferromagnetic shape memory alloys: a theoretical approach. J. Appl. Phys. 101(12), 123917 (2007)

    Article  Google Scholar 

  30. K. Ahmed, M.N.I. Shiblee, A. Khosla, L. Nagahara, T. Thundat, H. Furukawa, Recent progresses in 4D printing of gel materials. J. Electrochem. Soc. 167(3), 037563 (2020)

    Article  Google Scholar 

  31. D. Grinberg, S. Siddique, M.Q. Le, R. Liang, J.F. Capsal, P.J. Cottinet, 4D Printing based piezoelectric composite for medical applications. J. Polym. Sci. Part B Polym. Phys. 57(2), 109–115 (2019)

    Article  Google Scholar 

  32. D. Khorsandi, A. Fahimipour, P. Abasian, S.S. Saber, M. Seyedi, S. Ghanavati, et al., 3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications. Acta Biomateri. (2020). https://doi.org/10.1016/j.actbio.2020.12.044

  33. Y.S. Lui, W.T. Sow, L.P. Tan, Y. Wu, Y. Lai, H. Li, 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater. 92, 19–36 (2019)

    Article  Google Scholar 

  34. K. Ntouanoglou, P. Stavropoulos, D. Mourtzis, 4D printing prospects for the aerospace industry: a critical review. Procedia Manuf. 18, 120–129 (2018)

    Article  Google Scholar 

  35. R. Ashima, A. Haleem, S. Bahl, M. Javaid, S.K. Mahla, S. Singh, Automation and manufacturing of smart materials in Additive Manufacturing technologies using Internet of Things towards the adoption of Industry 40. Mater. Today Proc. 45, 5081–5088 (2021)

    Article  Google Scholar 

  36. M. Javaid, A. Haleem, Significant advancements of 4D printing in the field of orthopaedics. J. Clin. Orthop. Trauma 11, S485–S490 (2020)

    Article  Google Scholar 

  37. M.P. Caputo, A.E. Berkowitz, A. Armstrong, P. Müllner, C.V. Solomon, 4D printing of net shape parts made from Ni-Mn-Ga magnetic shape-memory alloys. Addit. Manuf. 21, 579–588 (2018)

    Google Scholar 

  38. A. I. Salimon, F. S. Senatov, V. Kalyaev, A. M. Korsunsky, Shape memory polymer blends and composites for 3D and 4D printing applications. In 3D and 4D Printing of Polymer Nanocomposite Materials (pp. 161–189). Elsevier (2020)

  39. Z.U. Baba, W.K. Shafi, M.I.U. Haq, A. Raina, Towards sustainable automobiles-advancements and challenges. Prog. Ind. Ecol. Int. J. 13(4), 315–331 (2019)

    Article  Google Scholar 

  40. S. Van Hoa, Development of composite springs using 4D printing method. Compos. Struct. 210, 869–876 (2019)

    Article  Google Scholar 

  41. V. Carlota, How will 4D printing disrupt our current manufacturing techniques? (2019). https://www.3dnatives.com/en/4d-printing-disrupting-current-manufacturing-techniques-230920194/

  42. Y. Yu, G. Kim, K. Mathur, A critical review of additive manufacturing: an innovation of mass customization. J. Text. Appar. Technol. Manag., 11(3) (2020)

  43. N. Ashammakhi, S. Ahadian, F. Zengjie, K. Suthiwanich, F. Lorestani, G. Orive, S. Ostrovidov, A. Khademhosseini, Advances and future perspectives in 4D bioprinting. Biotechnol. J. 13(12), 1800148 (2018)

    Article  Google Scholar 

  44. M. Bodaghi, A.R. Damanpack, W.H. Liao, Self-expanding/shrinking structures by 4D printing. Smart Mater. Struct. 25(10), 105034 (2016)

    Article  Google Scholar 

  45. M. Bodaghi, A. Serjouei, A. Zolfagharian, M. Fotouhi, H. Rahman, D. Durand, Reversible energy absorbing meta-sandwiches by FDM 4D printing. Int. J. Mech. Sci. 173, 105451 (2020)

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Irfan Ul Haq.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raina, A., Haq, M.I.U., Javaid, M. et al. 4D Printing for Automotive Industry Applications. J. Inst. Eng. India Ser. D 102, 521–529 (2021). https://doi.org/10.1007/s40033-021-00284-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-021-00284-z

Keywords

Navigation