Skip to main content
Log in

Influence of Delta Wing on Wall Erosion Characteristics of Mitred Pipe Bends Handling Coal Slurries

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

The present work investigates the influence of delta wing vortex generators placed inside circular mitred pipe bends, handling high density and erosive coal slurries. Coal slurry flowing at different Reynolds numbers ranging from 2000 < Re < 10,000 is tested. Mitred bends having a flow turning angle (α) of 45°, formed by joining segments of pipe, with varying number of joints (1, 2 and 3) were assessed numerically. Delta wing was positioned inside the pipe at different angles (β = 30°, 60°, 90°, 120° and 150°). Coal slurry viscosity and density varied to understand the influence of solids loading (φ = 30%, 35%, 41%, 42%, 43%, 44%) on the wall erosion characteristics. Computational studies are carried out on a 90° turning circular sectioned smooth pipe bend to study the impact of various turbulence models, and the results are validated with appropriate results from the literature. A turbulence model having good correlation with the literature results is identified and adopted in the present study. Highest turbulent mixing at the pipe outlet and reduced peak wall shear stress were considered as criterion for selecting best delta wing orientation, though with a higher pressure drop penalty. Unique delta wing induced vortex flow evolutions in the streamwise direction is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.R. Dean, Note on the motion of fluid in a curved pipe. Philos. Mag. 4, 208–223 (1927)

    Article  Google Scholar 

  2. H.E. Fiedler, A note on secondary flow in bends and bend combinations. Exp. Fluids 23, 262–264 (1997)

    Article  Google Scholar 

  3. K. Sudo, M. Sumida, H. Hibara, Experimental investigation on turbulent flow through a circular-sectioned 180° bend. Exp. Fluids 28, 51–57 (2000)

    Article  Google Scholar 

  4. B. Song, R.S. Amano, Application of non-linear k − ω model to a turbulent flow inside a sharp U-bend. Comput. Mech. 26, 344–351 (2000)

    Article  Google Scholar 

  5. G.F. Homicz, Computational fluid dynamics simulations of pipe elbow flow, Engineering Sciences Center Report, Sandia National Laboratories, NM 87185-0836, SAND2004-3467 (2004)

  6. S. Etemad, B. Sunden, O. Daunius, Turbulent flow and heat transfer in a square-sectioned U-bend. Prog. Comput. Fluid Dyn. 6(1/2/3), 89–100 (2006)

    Article  Google Scholar 

  7. W. Liwei, D. Dianrong, Z. Yigong, Numerical simulation of turbulent flow of hydraulic oil through 90° circular-sectional bend. China J. Mech. Eng. 25(5), 905–910 (2012)

    Article  Google Scholar 

  8. T.K. Bandyopadhyay, S.K. Das, Non-Newtonian and gas-non-Newtonian liquid flow through elbows—CFD analysis. J. Appl. Fluid Mech. 6(1), 131–141 (2013)

    Google Scholar 

  9. R. Rohrig, S. Jakirlic, C. Tropea, Comparative computational study of turbulent flow in a 90° pipe elbow. Int. J. Heat Fluid Flow 55, 120–131 (2015)

    Article  Google Scholar 

  10. C. Li, Q. Huang, S. Yan, T. Huang, Parametric CFD studies on erosion in 3D double elbow. Int. J. Eng. Syst. Model. Simul. 8(4), 264–272 (2016)

    Google Scholar 

  11. M.P. Bond, R. Kitching, Multi-mitred and single-mitred bends subjected to internal pressure. Int. J. Mech. Sci. 13(5), 471–488 (1971). https://doi.org/10.1016/0020-7403(71)90094-4

    Article  Google Scholar 

  12. Y. Hiroshi, K. Genichiro, I. Ryotaro, Study on three-dimensional flow and heat transfer in miter-bend. Bull. JSME 27(231), 1905–1912 (1984)

    Article  Google Scholar 

  13. Y. Hiroshi, I. Ryotaro, K. Genichiro, Fluid flow and heat transfer in a two dimensional miter bend-study of unsteady motion by numerical calculations. JSME Int J., Ser. B 30(259), 93–99 (1987)

    Article  Google Scholar 

  14. Y.M. Chung, P.G. Tucker, D.G. Roychowdhury, Unsteady laminar flow and convective heat transfer in a sharp 180° bend. Int. J. Heat Fluid Flow 24, 67–76 (2003)

    Article  Google Scholar 

  15. M.M. Muhammadu, K. Osman, E. Hamzah, Numerical methodology to determine fluid flow pattern with corrosion in pipe bends using computational fluid dynamics software. ARPN J. Eng. Appl. Sci. 9(10), 1978–1982 (2014)

    Google Scholar 

  16. F. Jiang, Y. Long, Y.J. Wang, Z.Z. Liu, C.G. Chen, Numerical simulation of non-Newtonian core annular flow through rectangle return bends. J. Appl. Fluid Mech. 9(1), 431–441 (2016)

    Article  Google Scholar 

  17. C.E. Brown, D.W.H. Michael, Effect of leading-edge separation on the lift of a delta wing. J. Aeronaut. Sci. 21(10), 690–694 (1954). https://doi.org/10.2514/8.3180

    Article  MATH  Google Scholar 

  18. M. Fiebig, P. Kallweit, N. Mitra, S. Tiggelbeck, Heat transfer enhancement and drag by longitudinal vortex generators in channel flow. Exp. Therm. Fluid Sci. 4(1), 103–114 (1991). https://doi.org/10.1016/0894-1777(91)90024-l

    Article  Google Scholar 

  19. L.W. Traub, Theoretical and experimental investigation of biplane delta wings. J. Aircraft 38(3), 536–546 (2001)

    Article  Google Scholar 

  20. M.C. Gentry, A.M. Jacobi, Heat transfer enhancement by delta-wing-generated tip vortices in flat-plate and developing channel flows. J. Heat Transf. 124(6), 1158–1168 (2002). https://doi.org/10.1115/1.1513578

    Article  Google Scholar 

  21. S. Srigrarom, N. Lewpiriyawong, Controlled vortex breakdown on modified delta wings. J. Vis. 10(3), 299–307 (2007). https://doi.org/10.1007/bf03181697

    Article  Google Scholar 

  22. S.B. Mat, The analysis of flow on round-edged delta wings, Ph.D. thesis (University of Glasgow, 2011)

  23. R.M. Cummings, A. Schütte, Detached-Eddy Simulation of the vortical flow field about the VFE-2 delta wing. Aerosp. Sci. Technol. 24(1), 66–76 (2013). https://doi.org/10.1016/j.ast.2012.02.007

    Article  Google Scholar 

  24. Ansys Fluent 15.0 users guide, (SAS IP, Inc., 2013)

  25. M.F. Ghazali, M.F.A. Rahim, CFD prediction of heat and fluid flow through U-bends using high Reynolds-number EVM and DSM models. Proc. Eng. 53, 600–606 (2013)

    Article  Google Scholar 

  26. P. Dutta, S.K. Saha, N. Nandi, N. Pal, Numerical study on flow separation in 90° pipe bend under high Reynolds number by k − ε modelling. J. Eng. Sci. Technol. 19, 904–910 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Arun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arun, G., Babu, S.P.K., Natarajan, S. et al. Influence of Delta Wing on Wall Erosion Characteristics of Mitred Pipe Bends Handling Coal Slurries. J. Inst. Eng. India Ser. D 101, 187–195 (2020). https://doi.org/10.1007/s40033-020-00226-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-020-00226-1

Keywords

Navigation