Skip to main content
Log in

Vibration Control and Comparative Analysis of Passive and Active Suspension Systems Using PID Controller with Particle Swarm Optimization

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

A vehicle suspension system is a crucial component of an automobile that ultimately determines the vehicle's road handling performance and comfortable ride quality. The passive suspension system cannot improve the two properties simultaneously due to their limited structure, leading to wheel bounce and roll cornering. Therefore, an active system has become the topic of research to overcome these limitations. In the present work, the modelling of passive and active suspension systems for a quarter-car model using MATLAB/Simulink has been done by importing the mathematical model of both systems in the mentioned software. A PID controller is used to explore the performance of the active suspension system in terms of body acceleration and settling time of vibration amplitudes. Comparative analysis is then fetched out for various combinations of suspension parameters like spring stiffness and damping coefficient. It was investigated that body acceleration decreased by 92.20% and settling time reduced by 30%, improving ride comfort and road handling in the active system. The objective to obtain zero peak overshoot and minimum settling time is achieved by applying the particle swarm optimization technique (PSO) to determine the optimized scaling factors. After simulation results, body acceleration decreases further by 94.15%, and settling time reduces further by 30%, which is attributed to a vehicle's smooth ride and stable road handling. The PID control and PSO algorithm combination are more effective as it has depicted the best stability and reliability. This latest type of swarm intelligent control method procured a new way of thinking about the automotive active suspension control theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. A. Goodarzi, A. Khajepour, Vehicle suspension system technology and design, synthesis lectures on advances in automotive technology, Morgan & Claypool Publishers, 1(1), (2017)

  2. M. Ravindran, S. Palanisamy, R.S. kumar, M. Soundarrajan, J. Prabakaran, Design & analysis of front suspension for light duty vehicle, IJSRD 6(09), 406–409 (2018)

  3. A. Dubrovskiy, S. Aliukov, S. Dubrovskiy, A. Alyukov, Basic characteristics of adaptive suspensions of vehicles with new principle of operation. SAE Int. J. Commer. Veh. 10(1), 193–203 (2017)

    Article  Google Scholar 

  4. M. Ghoniem, T. Awad, O. Mokhiamar, Control of a new low-cost semi-active vehicle suspension system using artificial neural networks. Alexandria Eng. J. 59(5), 4013–4025 (2020)

    Article  Google Scholar 

  5. X. Shao, F. Naghdy, H. Du, Enhanced ride performance of electric vehicle suspension system based on genetic algorithm optimization. 20th Int Conf Electr Mach Syst ICEMS (2017). https://doi.org/10.1109/ICEMS.2017.8056265

    Article  Google Scholar 

  6. A. Mehmood, A.A. Khan, A. Mehmood, Optimization of Suspension Damping Using Different Mathematical Car Models. Int. J. Mech. Eng. 3(10), 1–15 (2013)

    Google Scholar 

  7. K. Hassan, A.A. Dammed, Control and simulation of semi-active suspension system using PID controller for automobiles under LABVIEW simulink. Int. .J. Curr. Eng. Technol. 7(5), 1824–1830 (2017)

    Google Scholar 

  8. A. Aly, F. Salem, Vehicle suspension systems control: a review. Int. J. Control. Autom. Syst. 2(2), 46–54 (2013)

    Google Scholar 

  9. I. Martins, J. Esteves, F.P. da Silva, P. Verdelho, Electromagnetic hybrid active-passive vehicle suspension system. IEEE VTS 50th Veh Technol Conf VTC 1999-Fall 3, 2273–2277 (1999)

    Google Scholar 

  10. K.D. Rao, Modeling, simulation and control of semi active suspension system for automobiles under MATLAB simulink using PID controller. IFAC Proceedings Volumes 47(1), 827–831 (2014)

    Article  Google Scholar 

  11. M. Issa, A. Samn, Passive vehicle suspension system optimization using Harris Hawk Optimization algorithm. Math. Comput. Simul 191, 328–345 (2022)

    Article  MathSciNet  Google Scholar 

  12. D. F. Sousa, S. M. Avila, Simulation of an active suspension using PID control. Proceedings of the PANACM, Argentina, (2015)

  13. A. Anandan, A. Kandavel, A.S. Soosairaj, Comparison of quarter car suspension model using two different controllers. Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018). Lecture Notes in Mechanical Engineering. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-2697-4_22

  14. Y. Chen, Skyhook surface sliding mode control on semi-active vehicle suspension system for ride comfort enhancement. Engineering 01(01), 23–32 (2009)

    Article  Google Scholar 

  15. J.D.J. Lozoya, R.M. Morales, R.A. Ramirez, H. Ahuett, Efficient modeling of MR dampers. IEEE Lat. Am. Trans. 12(4), 550–556 (2014)

    Article  Google Scholar 

  16. M.N. Khajavi, V. Abdollahi, Comparison between optimized passive vehicle suspension system and semi active fuzzy logic controlled suspension system regarding ride and handling. Int. J. Mech. Mechatronics Eng. 19(1), 57–61 (2007)

    Google Scholar 

  17. R.N. Yerrawar, R.R. Arakerimath, "Performance assessment and control policies for semiactive suspension using SIMSCAPE," International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), Pune, India, 1163–1168 (2016)

  18. A.J. Qazi, C.W. De Silva, A. Khan, M.T. Khan, Performance analysis of a semiactive suspension system with particle swarm optimization and fuzzy logic control. Sci. World J. 2014, 1–12 (2014)

    Google Scholar 

  19. M.H. Ab Talib et al., Vibration control of semi-active suspension system using PID controller with advanced firefly algorithm and particle swarm optimization. J. Ambient. Intell. Humaniz. Comput. 12(1), 1119–1137 (2021)

    Article  Google Scholar 

  20. P. Choudhary, S. Sachar, T. Khurana, U. Jain, Y. Parvez, M. Soni, Energy analysis of a single cylinder 4-stroke diesel engine using diesel and diesel-biodiesel blends. Int. J. Appl. Eng. Res. 13(12), 10779–10788 (2018)

    Google Scholar 

  21. Y.P. Urvashi Jain, T. Khurana, S. Sachar, P. Choudhary, Performance characteristics and energy analysis of a 4-stroke single cylinder diesel engine using diesel and diesel-kerosene blends. Int. J. Res. Anal. Rev. 5(3), 194–203 (2018)

    Google Scholar 

  22. Y.P. Shruti Srivastava, H. Chaubey, Performance evaluation of CI engine using diesel, diesel-biodiesel blends and diesel-kerosene blends through exergy analysis performance evaluation of CI engine using diesel, diesel- biodiesel blends and diesel-kerosene blends through exergy analysis. IOP Conf. Ser. Mater. Sci. Eng. 691(1), 012066 (2019)

    Article  Google Scholar 

  23. S. Sachar, Y. Parvez, T. Khurana, H. Chaubey, Heat transfer enhancement of the air-cooled engine fins through geometrical and material analysis: a review. Mater. Today. Proc. (2023). https://doi.org/10.1016/j.matpr.2023.03.447

    Article  Google Scholar 

  24. A. Turnip, I.R. Setiawan, M.F. Amri, T.A. Tamba, Controller design for active suspension system based on skyhook reference model. Proc 2015 Int. Conf. Technol. Inform. Manag. Eng. Environ. TIME-E 2015 (2016). https://doi.org/10.1109/TIME-E.2015.7389764

    Article  Google Scholar 

  25. A.S. Taksale, Modeling, analysis and control of passive and active suspension system for a quarter car. Int. J. Appl. Eng. Res. 8(12), 1405–1414 (2013)

    Google Scholar 

  26. A. Goyal, A. Sharma, Advances in active suspension system, IJCRT, | International Conference Proceeding, 177–1881 (2017)

  27. K. Hyniova, Energy control principles in an automotive active suspension system, Trans Motauto World 4 (3), 107–110 (2019)

  28. S. Shastri, Y. Parvez, N.R. Chauhan, Wireless power transfer system for scorbot Er-4U robotic arm. Int. J. Power Energy Syst (2020). https://doi.org/10.2316/J.2020.203-0044

    Article  Google Scholar 

  29. D.S. Yoon, G.W. Kim, S.B. Choi, Response time of magnetorheological dampers to current inputs in a semi-active suspension system: modeling, control and sensitivity analysis. Mech. Syst. Signal Process. 146, 106999 (2020)

    Article  Google Scholar 

  30. E.A. Alandoli, M.Z.A. Rashid, M. Sulaiman, A comparison of PID and LQR controllers for position tracking and vibration suppression of flexible link manipulator. J. Theor. Appl. Inf. Technol. 95(13), 2949–2955 (2017)

    Google Scholar 

  31. L. Geng, M. Cui, Z. Wu, Stochastic control of semi-active suspension system, Proc. 29th Chinese Control Decis. Conf. CCDC 2017, pp. 3791–3796, (2017)

  32. D. Choi, Min-max control for vibration suppression of mobile manipulator with active suspension system. Int. J. Control. Autom. Syst. 20(2), 618–626 (2022)

    Article  Google Scholar 

  33. N.D. Pandey, D.P. Tiwari, Comparison between speed control DC motor using fuzzy PID and PSO-PID. Int. J. Inf. Res. Rev. 04(01), 3493–3496 (2017)

    Google Scholar 

  34. M.H. Mat, I.Z. Mat Darns, Self-tuning PID controller for active suspension system with hydraulic actuator. IEEE Symp. Comput. Inform. Isc. 2013(4), 86–91 (2013)

    Google Scholar 

  35. A.G. Neve, G.M. Kakandikar, O. Kulkarni, Application of grasshopper optimization algorithm for constrained and unconstrained test functions. Int. J. Swarm. Intell. Evol. Comput. (2017). https://doi.org/10.4172/2090-4908.1000165

    Article  Google Scholar 

  36. Y. Shahid, M. Wei, Comparative analysis of different model-based controllers using active vehicle suspension system. Algorithms (2020). https://doi.org/10.3390/a13010010

    Article  Google Scholar 

  37. Y.Q. Han, W.J. He, N. Li, S.L. Zhu, Adaptive tracking control of a class of nonlinear systems with input delay and dynamic uncertainties using multi-dimensional taylor network. Int. J. Control. Autom. Syst. 19(12), 4078–4089 (2021)

    Article  Google Scholar 

  38. S. Dhawan, R. Sinha, S. Chaturvedi, Y. Parvez, A.U. Haq, Development and performance analysis of an automated solar-powered thermoelectric refrigeration system. Appl. Sol. Energy (English Transl Geliotekhnika) 59(3), 226–238 (2023). https://doi.org/10.3103/S0003701X22600874

    Article  Google Scholar 

  39. H. Choudhary, V. Mandawaria, M. Sharma, A Comparative analysis of PID controller in closed loop system and open loop system. Int. J. Eng. Sci. Comput. 7(3), 6039–6041 (2017)

    Google Scholar 

  40. J. Chen, M.N. Omidvar, M. Azad, X. Yao, Knowledge-based particle swarm optimization for PID controller tuning. 2017 IEEE Congr. Evol. Comput. CEC 2017—Proc (2017). https://doi.org/10.1109/CEC.2017.7969522

    Article  Google Scholar 

  41. R. Zou, V. Kalivarapu, E. Winer, J. Oliver, S. Bhattacharya, Particle swarm optimization-based source seeking. IEEE Trans. Autom. Sci. Eng. 12(3), 865–875 (2015)

    Article  Google Scholar 

  42. S.P. Tee, M.M. Ghazaly, A.C. Amran, I.W. Jamaludin, Experimental investigation of a passive quarter car suspension system. ARPN J. Eng. Appl. Sci. 13(4), 1181–1187 (2018)

    Google Scholar 

  43. D. Wang, D. Zhao, M. Gong, B. Yang, Research on robust model predictive control for electro-hydraulic servo active suspension systems. IEEE Access 6, 3231–3240 (2017)

    Article  Google Scholar 

  44. A. Ahmed, S.A. Ahmed, N.M. Ghazaly, G.T.A. El-Jaber, PID controller of active suspension system for a quarter car model. Int. J. Adv. Eng. Technol. 8(6), 899–909 (2015)

    Google Scholar 

  45. C. Kuber, Modelling simulation and control of an active suspension system. Int. J. Mech. Eng. Technol. 5(11), 66–75 (2014)

    Google Scholar 

  46. T. Yuvapriya, P. Lakshmi, Numerical analysis and performance enhancement of active suspension system using bat optimization. Int. J. Dyn. Control 9(2), 590–601 (2021)

    Article  Google Scholar 

  47. M. Ehtesham, M. Jamil, Control Techniques to Optimize PV System Performance for Smart Energy Applications, vol. 58. Springer Singapore, (2020)

  48. M. Jamil, M. Ehtesham, P.V. Optimizing, system performance considering the impacts of non-uniform irradiance and partial shading. Int. Conf. Energy Econ. Environ.—1st IEEE Uttar Pradesh Sect. Conf. UPCON-ICEEE 2015 (2015). https://doi.org/10.1109/EnergyEconomics.2015.7235090

    Article  Google Scholar 

  49. A.J. Qazi, U.A. Farooqui, A. Khan, M.T. Khan, F. Mazhar, A. Fiaz, Optimization of semi-active suspension system using particle swarm optimization algorithm. AASRI Procedia 4, 160–166 (2013)

    Article  Google Scholar 

  50. M. Li, J. Li, G. Li, J. Xu, Analysis of active suspension control based on improved fuzzy neural network PID. World Electr Veh J (2022). https://doi.org/10.3390/wevj13120226

    Article  Google Scholar 

  51. Y. Shiao, C. C. Lai, Q. A. Nguyen, The analysis of a semi-active suspension system, Proc. SICE Annu. Conf., pp. 2077–2082, (2010)

  52. C.Y. Hsiao, Y.H. Wang, Evaluation of ride comfort for active suspension system based on self-tuning fuzzy sliding mode control. Int. J. Control. Autom. Syst. 20(4), 1131–1141 (2022)

    Article  Google Scholar 

  53. A.A. Ahmed, B. Özkan, Using of fuzzy pid controller to improve vehicle stability for planar model and full vehicle models. Int. J. Appl. Eng. Res. 12(5), 671–680 (2017)

    Google Scholar 

  54. Y.J. Gong et al., Genetic learning particle swarm optimization. IEEE Trans. Cybern. 46(10), 2277–2290 (2016)

    Article  Google Scholar 

  55. Q.B. Begume, M. Saad, S. Akhtar, A.K. Rathore, M. Reyaz-ur-Rahim, Control of semi-active suspension system using PID controller. IOP Conf. Ser. Mater. Sci. Eng. 404, 012039 (2018)

    Article  Google Scholar 

  56. D. Peng, G. Tan, K. Fang, L. Chen, P.K. Agyeman, Y. Zhang, Multiobjective optimization of an off-road vehicle suspension parameter through a genetic algorithm based on the particle swarm optimization. Math. Probl. Eng. (2021). https://doi.org/10.1155/2021/9640928

    Article  Google Scholar 

  57. C.C. Chen, Y.T. Chen, Global optimization control for nonlinear full-car active suspension system with multi-performances. IET Control Theory Appl. 15(14), 1882–1905 (2021)

    Article  MathSciNet  Google Scholar 

  58. H. Wu, L. Zheng, Y. Li, Coupling effects in hub motor and optimization for active suspension system to improve the vehicle and the motor performance. J. Sound Vib. 482, 115426 (2020)

    Article  Google Scholar 

  59. S.R. Gampa et al., Pareto optimality based PID controller design for vehicle active suspension system using grasshopper optimization algorithm. J Electr Syst Inf Technol (2022). https://doi.org/10.1186/s43067-022-00065-y

    Article  Google Scholar 

  60. A. Tandel, A.R. Deshpande, S.P. Deshmukh, K.R. Jagtap, Modeling, analysis and PID controller implementation on double wishbone suspension using SimMechanics and Simulink. Procedia Eng. 97, 1274–1281 (2014)

    Article  Google Scholar 

  61. U.C. Allard, G. Dube, R. Khoury, L. Lamontagne, B. Gosselin, F. Laviolette, Time adaptive dual particle swarm optimization. 2017 IEEE Congr. Evol. Comput. CEC 2017—Proc (2017). https://doi.org/10.1109/CEC.2017.7969613

    Article  Google Scholar 

  62. S.U. Khan, S. Yang, L. Wang, L. Liu, A modified particle swarm optimization algorithm for global optimizations of inverse problems. IEEE Trans. Magn. 52(3), 1–4 (2016)

    Article  Google Scholar 

  63. M.R. Bonyadi, Z. Michalewicz, Stability analysis of the particle swarm optimization without stagnation assumption. IEEE Trans. Evol. Comput. 20(5), 814–819 (2016)

    Article  Google Scholar 

  64. S. Shastri, Y. Parvez, R. Chauhan, Inverse kinematics for A 3-R robot using artificial neural network and modified particle swarm optimization. J. Inst. Eng. Ser. C (2019). https://doi.org/10.1007/s40032-019-00539-5

    Article  Google Scholar 

  65. J. Hurel, J. Amaya, J. Peralta, D. Alvarado, F. Flores, Particle Swarm Optimization applied on Fuzzy Control: Comparative analysis for an Quarter-car Active Suspension Model, Proc. IEEE Int. Conf. Ind. Technol., vol. 2022-Augus (2022)

Download references

Funding

The authors declare that no funds, grants, or other support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yusuf Parvez or Nathi Ram Chauhan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvez, Y., Chauhan, N.R. & Srivastava, M. Vibration Control and Comparative Analysis of Passive and Active Suspension Systems Using PID Controller with Particle Swarm Optimization. J. Inst. Eng. India Ser. C (2024). https://doi.org/10.1007/s40032-024-01038-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40032-024-01038-y

Keywords

Navigation