Skip to main content

Advertisement

Log in

Prospects of Additive Manufacturing Technology in Mass Customization of Automotive Parts: A Case Study

  • Case Study
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Additive manufacturing/3D printing is a revolutionary technology that uses layers of material to create objects from 3D digital data for various applications. Now, it also opens the doors to cost-effective mass customization. With near-scale production efficiency, mass customization attempts to produce products and services that best fit individual consumers’ needs. In this pursuance, the present work aims to investigate the prospects of additive manufacturing in mass customization for the automotive industry. A case study of automotive parts, i.e. mirror panel of bikes such as racing bikes, bobber bikes and new designs and the results, is compared with customized designed components. A significant saving of material and manufacturing time with improved strength has resulted in corresponding to the optimized set of parameters. The material weight of the new design is approximately 32.30% and 21.52% lower than the racing bike and bobber bike, respectively. The customized model developed in this paper is fixed from both ends replacing the traditional ball joint and installing a vibrating insulator at the joint in the handle for less image distortion. The customized model developed will be helpful for efficient & sustainable product design and manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. S. Dev, R. Srivastava, in Additive Manufacturing. Sustainability, Innovation and Procurement (2019), pp. 27–60

  2. S. Dev, R. Srivastava, Parametric analysis and optimization of fused deposition modeling technique for dynamic mechanical properties of acrylic butadiene styrene parts. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 236(8), 4166–4179 (2021). https://doi.org/10.1177/09544062211047848

    Article  Google Scholar 

  3. D.K. Yadav, R. Srivastava, S. Dev, Design & fabrication of ABS part by FDM for automobile application. Mater. Today Proc. 26, 2089–2093 (2020). https://doi.org/10.1016/j.matpr.2020.02.451

    Article  Google Scholar 

  4. T. Blecker, N. Abdelkafi, Mass customization: state-of-the-art and challenges. Int. Ser. Oper. Res. Manag. Sci. 87, 1–25 (2006). https://doi.org/10.1007/0-387-32224-8_1

    Article  Google Scholar 

  5. I. Paoletti, Mass customization with additive manufacturing: new perspectives for multi performative building components in architecture. Procedia Eng. 180, 1150–1159 (2017). https://doi.org/10.1016/j.proeng.2017.04.275

    Article  Google Scholar 

  6. F. Salvador, M. Rungtusanatham, C. Forza, Supply-chain configurations for mass customization. Prod. Plan. Control 15, 381–397 (2004). https://doi.org/10.1080/0953728042000238818

    Article  Google Scholar 

  7. S. Singh, S. Ramakrishna, R. Singh, Material issues in additive manufacturing: a review. J. Manuf. Process. 25, 185–200 (2017). https://doi.org/10.1016/j.jmapro.2016.11.006

    Article  Google Scholar 

  8. X. Wang, X. Gong, K. Chou, Review on powder-bed laser additive manufacturing of Inconel 718 parts. J. Eng. Manuf. (2015). https://doi.org/10.1177/0954405415619883

    Article  Google Scholar 

  9. N. Guo, M.C. Leu, Additive manufacturing: technology, applications and research needs. Front. Mech. Eng. 8, 215–243 (2013). https://doi.org/10.1007/s11465-013-0248-8

    Article  Google Scholar 

  10. L. Chen, Y. He, Y. Yang et al., The research status and development trend of additive manufacturing technology. Int. J. Adv. Manuf. Technol. (2016). https://doi.org/10.1007/s00170-016-9335-4

    Article  Google Scholar 

  11. S. Thirumalai, K.K. Sinha, Customization of the online purchase process in electronic retailing and customer satisfaction: an online field study. J. Oper. Manag. 29, 477–487 (2011). https://doi.org/10.1016/j.jom.2010.11.009

    Article  Google Scholar 

  12. A.S. Elakkad, 3D technology in the automotive industry. Int. J. Eng. Res. 8, 248–251 (2019). https://doi.org/10.17577/ijertv8is110122

    Article  Google Scholar 

  13. F.T. Piller, M. Müller, A new marketing approach to mass customisation. Int. J. Comput. Integr. Manuf.Comput. Integr. Manuf. 17, 583–593 (2004). https://doi.org/10.1080/0951192042000273140

    Article  Google Scholar 

  14. R. Song, C. Telenko, Material and energy loss due to human and machine error in commercial FDM printers. J. Clean. Prod. 148, 895–904 (2017). https://doi.org/10.1016/j.jclepro.2017.01.171

    Article  Google Scholar 

  15. M. Mani, K.W. Lyons, S.K. Gupta, Sustainability characterization for additive manufacturing. J. Res. Natl. Inst. Stand. Technol. 119, 419–428 (2014). https://doi.org/10.6028/jres.119.016

    Article  Google Scholar 

  16. L. Suárez, M. Domínguez, Sustainability and environmental impact of fused deposition modelling (FDM) technologies. Int. J. Adv. Manuf. Technol. 106, 1267–1279 (2020). https://doi.org/10.1007/s00170-019-04676-0

    Article  Google Scholar 

  17. V. Lunetto, Sustainability Assessment of Additive Manufacturing Processes (2017)

  18. S. Ford, Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J. Clean. Prod. 137, 1573–1587 (2016). https://doi.org/10.1016/j.jclepro.2016.04.150

    Article  Google Scholar 

  19. A. Spa, V.A. Gherardesca, Living on the moon: topological optimization of a 3D-printed lunar shelter. Nexus Netw. J. 15, 285–302 (2013). https://doi.org/10.1007/s00004-013-0155-7

    Article  Google Scholar 

  20. R.S. SatyDev, Experimental investigation and optimization of FDM process parameters for material and mechanical strength. Mater. Today Proc. 26, 1995–1999 (2020). https://doi.org/10.1016/j.matpr.2020.02.435

    Article  Google Scholar 

  21. S. Dev, R. Srivastava, P. Yadav, S. Prakash, in Additive Manufcaturing. Sustainability innovation and procurement (CRC Press Taylor & Francis Group, 2019), p ISBN 9780429430695

  22. W.K. Sarwade, Evolution and growth of Indian auto industry. J. Manag. Res. Anal. 2, 136–141 (2015)

    Google Scholar 

  23. J.P. Gownder, Mass Customization is (Finally) The Future of Products. https://www.forrester.com/blogs/11-04-15-mass_customization_is_finally_the_future_of_products/ (2011), pp. 9–12

  24. X. Yang, R.C. Malak, C. Lauer et al., Virtual Reality Enhanced Manufacturing System Design. 7th International Conference on Digital Enterprise Technology (2011), pp. 125–133

  25. X. Zhang, X. Ming, Z. Liu et al., A new customization model for enterprises based on improved framework of customer to business: a case study in automobile industry. Adv. Mech. Eng. 11, 1–17 (2019). https://doi.org/10.1177/1687814019833882

    Article  Google Scholar 

  26. X.P. Ren, H.Q. Li, H. Guo et al., A comparative study on mechanical properties of Ti–6Al–4V alloy processed by additive manufacturing vs. traditional processing. Mater. Sci. Eng. AA (2021). https://doi.org/10.1016/j.msea.2021.141384

    Article  Google Scholar 

  27. M. Alimohammadlou, Z. Khoshsepehr, Investigating Organizational Sustainable Development Through an Integrated Method of Interval-Valued Intuitionistic Fuzzy AHP and WASPAS (Springer, Netherlands, 2022)

    Book  Google Scholar 

  28. C.-W. Chang, H.-Y. Sun, C.-T. Horng et al., Progressive rear-view mirror for motorcycles. Opt. Express 24, 29283 (2016). https://doi.org/10.1364/oe.24.029283

    Article  Google Scholar 

  29. J.M. Chacón, M.A. Caminero, E. García-Plaza, P.J. Núñez, Additive manufacturing of PLA structures using fused deposition modelling: effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 124, 143–157 (2017). https://doi.org/10.1016/j.matdes.2017.03.065

    Article  Google Scholar 

  30. S. Vyavahare, S. Kumar, Experimental study of surface roughness, dimensional accuracy and time of fabrication of parts produced by fused deposition modelling. Rapid Prototyp. J. (2020). https://doi.org/10.1108/RPJ-12-2019-0315

    Article  Google Scholar 

  31. M.P.G. Chandrashekarappa, G.R. Chate, V. Parashivamurthy et al., Analysis and optimization of dimensional accuracy and porosity of high impact polystyrene material printed by FDM process: PSO, JAYA, Rao, and bald eagle search algorithms. Materials (Basel) 14, 1–20 (2021). https://doi.org/10.3390/ma14237479

    Article  Google Scholar 

  32. A.K. Sood, R.K. Ohdar, S.S. Mahapatra, Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method. Mater. Des. 30, 4243–4252 (2009). https://doi.org/10.1016/j.matdes.2009.04.030

    Article  Google Scholar 

  33. P. Yadav, A. Sahai, R.S. Sharma, Strength and surface characteristics of FDM-based 3D printed PLA parts for multiple infill design patterns. J. Inst. Eng. Ser. C 102, 197–207 (2021). https://doi.org/10.1007/s40032-020-00625-z

    Article  Google Scholar 

  34. P. Yadav, A. Sahai, R.S. Sharma, Flexural strength and surface profiling of carbon-based PLA parts by additive manufacturing. J. Inst. Eng. Ser. C 102, 921–931 (2021). https://doi.org/10.1007/s40032-021-00719-2

    Article  Google Scholar 

  35. M. Juneja, N. Thakur, D. Kumar et al., Accuracy in dental surgical guide fabrication using different 3-D printing techniques. Addit. Manuf. 22, 243–255 (2018). https://doi.org/10.1016/j.addma.2018.05.012

    Article  Google Scholar 

  36. M. Vaezi, C.K. Chua, Effects of layer thickness and binder saturation level parameters on 3D printing process. Int. J. Adv. Manuf. Technol. 53, 275–284 (2014). https://doi.org/10.1007/s00170-010-2821-1

    Article  Google Scholar 

  37. A. Farzadi, M. Solati-hashjin, M. Asadi-eydivand et al., Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering. PLoS One9, 1–14 (2014). https://doi.org/10.1371/journal.pone.0108252

    Article  Google Scholar 

  38. A. Lanzotti, M. Grasso, G. Staiano, M. Martorelli, The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyp. J. 21, 2014–2135 (2015)

    Article  Google Scholar 

  39. F. Ning, Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: effects of process parameters on tensile properties. J. Compos. Mater. (2016). https://doi.org/10.1177/0021998316646169

    Article  Google Scholar 

  40. B.H. Lee, J. Abdullah, Z.A. Khan, Optimization of rapid prototyping parameters for production of flexible ABS object. J. Mater. Process. Technol. 169, 54–61 (2005). https://doi.org/10.1016/j.jmatprotec.2005.02.259

    Article  Google Scholar 

  41. J.P. Thomas, J.P. Thomas, J.E. Renaud, Design of fused-deposition ABS components for stiffness. J. Mech. Des. 125, 545–551 (2003). https://doi.org/10.1115/1.1582499

    Article  Google Scholar 

  42. F. Rodrı, J.P. Thomas, J.E. Renaud, Mechanical behavior of acrylonitrile butadiene styrene fused deposition materials modeling. Rapid Prototyp. J. 9, 219–230 (2003). https://doi.org/10.1108/13552540310489604

    Article  Google Scholar 

  43. E. Ulu, E. Korkmaz, K. Yay et al., Enhancing the structural performance of additively manufactured objects through build orientation optimization. J. Mech. Des. (2015). https://doi.org/10.1115/1.4030998

    Article  Google Scholar 

  44. W. Wu, P. Geng, G. Li et al., Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials (Basel) 8, 5834–5846 (2015). https://doi.org/10.3390/ma8095271

    Article  Google Scholar 

  45. A. Zewe, M.I.T. News, Engineers create 3D-printed objects that sense how a user is interacting with them | MIT News | Massachusetts Institute of Technology. https://news.mit.edu/2021/3d-printed-objects-sense-interaction-0914 (2021)

  46. L. Yang, S. Li, Y. Li et al., Experimental investigations for optimizing the extrusion parameters on FDM PLA printed parts. J. Mater. Eng. Perform. 28, 169–182 (2019). https://doi.org/10.1007/s11665-018-3784-x

    Article  Google Scholar 

  47. M. Faujiya, Mechanical and Viscoelastic Properties of Polylactic Acid (PLA) Materials Processed Through Fused Deposition Modelling (FDM) (2016)

  48. S.K. Dhinesh, P.S. Arun, K.K. Senthil, A. Megalingam, Study on flexural and tensile behavior of PLA, ABS and PLA-ABS materials. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.03.546

    Article  Google Scholar 

  49. M. Algarni, S. Ghazali, Comparative study of the sensitivity of PLA, ABS, PEEK, and PETG’s mechanical properties to FDM printing process parameters. Crystals 11(8), 995 (2021). https://doi.org/10.3390/cryst11080995

    Article  Google Scholar 

  50. P. Alexander, S. Allen, D. Dutta, Part orientation and build cost determination in layered manufacturing. CAD Comput. Aided Des. 30, 343–356 (1998). https://doi.org/10.1016/S0010-4485(97)00083-3

    Article  Google Scholar 

  51. H. Jami, S.H. Masood, W.Q. Song, Dynamic response of FDM made ABS parts in different part orientations. Adv. Mater. Res. 748, 291–294 (2013). https://doi.org/10.4028/www.scientific.net/AMR.748.291

    Article  Google Scholar 

  52. S. Allen, A. Arbor, On the computation of part orientation using support structures in layered manufacturing. International Solid Freeform Fabrication Symposium (1994), pp. 259–269

  53. P.M. Pandey, K. Thrimurthulu, N.V. Reddy, Optimal part deposition orientation in FDM by using a multicriteria genetic algorithm. Int. J. Prod. Res. 42, 4069–4089 (2007). https://doi.org/10.1080/00207540410001708470

    Article  Google Scholar 

  54. A.A. D’Amico, A. Debaie, A.M. Peterson, Effect of layer thickness on irreversible thermal expansion and interlayer strength in fused deposition modeling. Rapid Prototyp. J. 23, 943–953 (2017). https://doi.org/10.1108/RPJ-05-2016-0077

    Article  Google Scholar 

  55. M. Samykano, S.K. Selvamani, K. Kadirgama et al., Mechanical property of FDM printed ABS: influence of printing parameters. Int. J. Adv. Manuf. Technol. 102, 2779–2796 (2019)

    Article  Google Scholar 

  56. H.P.P. Desu, A. Rossi, G.K. Mankoo et al., Experimental characterization of 3D printed thermoplastic plates subjected to low velocity impact. Int. J. Adv. Manuf. Technol. 107, 1659–1669 (2020). https://doi.org/10.1007/s00170-020-05120-4

    Article  Google Scholar 

  57. T.G. Anusree, A.R. Nair, M. Sivadasan, T.D. John, Process parameter optimization of fused deposition modeling for helical surfaces using grey relational analysis. Mater. Sci. Forum 879, 861–866 (2017). https://doi.org/10.4028/www.scientific.net/MSF.879.861

    Article  Google Scholar 

  58. S.O. Akande, Dimensional accuracy and surface finish optimization of fused deposition modelling parts using desirability function analysis. Int. J. Eng. Res. Technol. (2015). https://doi.org/10.17577/ijertv4is040393

    Article  Google Scholar 

  59. M. Vishwas, C.K. Basavaraj, Studies on optimizing process parameters of fused deposition modelling technology for ABS. Mater. Today Proc. 4, 10994–11003 (2017). https://doi.org/10.1016/j.matpr.2017.08.057

    Article  Google Scholar 

  60. H.K. Dave, B.H. Patel, S.R. Rajpurohit et al., Effect of multi-infill patterns on tensile behavior of FDM printed parts. J. Braz. Soc. Mech. Sci. Eng. 43, 1–15 (2021). https://doi.org/10.1007/s40430-020-02742-3

    Article  Google Scholar 

  61. M. Fernandez-Vicente, W. Calle, S. Ferrandiz, A. Conejero, Effect of infill parameters on tensile mechanical behavior in desktop 3D printing. 3D Print. Addit. Manuf. 3, 183–192 (2016). https://doi.org/10.1089/3dp.2015.0036

    Article  Google Scholar 

  62. J. Podroužek, M. Marcon, K. Ninčević, R. Wan-Wendner, Bio-inspired 3D infill patterns for additive manufacturing and structural applications. Materials (Basel) 12, 1–12 (2019). https://doi.org/10.3390/ma12030499

    Article  Google Scholar 

  63. R. Srinivasan, T. Pridhar, L.S. Ramprasath et al., Prediction of tensile strength in FDM printed ABS parts using response surface methodology (RSM). Mater. Today Proc. 27, 1827–1832 (2020). https://doi.org/10.1016/j.matpr.2020.03.788

    Article  Google Scholar 

  64. S. Dev, R. Srivastava, Effect of infill parameters on material sustainability and mechanical properties in fused deposition modelling process: a case study. Prog. Addit. Manuf. (2021). https://doi.org/10.1007/s40964-021-00184-4

    Article  Google Scholar 

  65. Z. Lu, O.I. Ayeni, X. Yang et al., Microstructure and phase analysis of 3D-printed components using bronze metal filament. J. Mater. Eng. Perform. 29, 1650–1656 (2020). https://doi.org/10.1007/s11665-020-04697-x

    Article  Google Scholar 

  66. N. Volpato, T.T. Zanotto, Analysis of deposition sequence in tool-path optimization for low-cost material extrusion additive manufacturing. Int. J. Adv. Manuf. Technol. 101, 1855–1863 (2019). https://doi.org/10.1007/s00170-018-3108-1

    Article  Google Scholar 

  67. A. Chalgham, A. Ehrmann, I. Wickenkamp, Mechanical properties of FDM printed PLA parts before and after thermal treatment. Polymers (Basel) (2021). https://doi.org/10.3390/polym13081239

    Article  Google Scholar 

Download references

Funding

This research did not obtain any grant from funding agencies in the commercial, public or not-for-profit divisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhinav Sarma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to Participate

Rajeev Srivastava designed the study and guided to perform experiments; Abhinav sarma performed the experiments, analysed the results and helped in writing—original draft preparation; all authors read and commented on the manuscript.

Consent for Publication

Enhancement in automotive industry with reduced manufacturing time through exercising the collective implementation of different MCDM approaches is the novelty of this study and breakthrough of AM issues. The contribution of work would satisfy the requirements of journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarma, A., Srivastava, R. Prospects of Additive Manufacturing Technology in Mass Customization of Automotive Parts: A Case Study. J. Inst. Eng. India Ser. C 105, 371–386 (2024). https://doi.org/10.1007/s40032-024-01029-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-024-01029-z

Keywords

Navigation