Skip to main content
Log in

Vibrational Behavior of Tapered Triangular Plate with Clamped Ends under Thermal Condition

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

In the present study, the effect of thermal gradient on the vibration of different types of triangular plates is discussed. Tapering in triangular plate is assumed bilinear. Variation in temperature of plate material is considered as linear in x-direction. The Rayleigh–Ritz technique is employed to evaluate the first two modes of frequency parameter for different values of thermal gradient, taper parameters and aspect ratios. The author reported frequency for both the modes of vibration for different types of clamped triangular plates, i.e., an isosceles triangular plate, right-angled isosceles triangular plate and scalene triangular plate. All numerical results are presented in tabular form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

\(\nu \) :

Poisson ratio of the plate material

\(\rho \) :

Mass density per unit volume of the plate material

h :

Thickness of the plate at \((\xi ,\eta )\)

\(h_{0}\) :

Thickness of the plate at \((\xi ,\eta )\equiv (0,0)\)

t :

Time

w(xyt):

Deflection of triangular plate

W(xy):

Deflection function

T(t):

Time function of triangular plate

\(\omega ^2\) :

Frequency constant

\(\beta _1\) :

Taper parameter in x-direction

\(\beta _2\) :

Taper parameter in y-direction

\(\alpha \) :

Thermal gradient

Y :

Young’s modulus

\(Y_{0}\) :

Young’s modulus at reference temperature

\(\lambda ^2\) :

Frequency parameter

\({\tilde{D}}\) :

Viscoelastic operator

\(D_1\) :

Flexural rigidity

References

  1. A.W. Leissa, Vibration of Plates (NASA, Washington, 1969)

    Google Scholar 

  2. D.J. Gorman, A highly accurate analytical solution for free vibration analysis of simply supported right triangular plates. J. Sound Vib. 89(l), 107–118 (1983)

    Article  Google Scholar 

  3. M. Shaukat, M. Bijlani, Vibration of triangular plates of variable thickness. Comput. Struct. 21(6), 1129–1135 (1985)

    Article  Google Scholar 

  4. D.J. Gorman, Free vibration analysis of right triangular plates with combinations of clamped-simply supported boundary conditions. J. Sound Vib. 106(3), 419–431 (1986)

    Article  Google Scholar 

  5. D.J. Gorman, Accurate free vibration analysis of right triangular plates with one free edge. J. Sound Vib. 131(l), 115–125 (1989)

    Article  Google Scholar 

  6. A.W. Leissa, N.A. Jaber, Vibrations of completely free triangular plates. Int. J. Mech. Sci. 34(8), 605–616 (1992)

    Article  Google Scholar 

  7. K.M. Liew, T.C. Chiam, The free flexural vibration of symmetric angle ply triangular composites laminates. J. Sound Vib. 169(5), 633–654 (1994)

    Article  Google Scholar 

  8. B. Singh, S.M. Hassan, Transverse vibration of triangular plate with arbitrary thickness variation and various boundary conditions. J. Sound Vib. 214(1), 29–55 (1998)

    Article  Google Scholar 

  9. T. Sakiyama, M. Huang, Free-vibration analysis of right triangular plates with variable thickness. J. Sound Vib. 234(5), 841–858 (2000)

    Article  Google Scholar 

  10. Y.K. Cheung, D. Zhou, Three-dimensional vibration analysis of cantilevered and completely free isosceles triangular plates. Int. J. Solids Struct. 39(3), 673–687 (2002)

    Article  Google Scholar 

  11. S. Chakraverty, Vibration of Plates (Taylor and Francis, Florida, 2009)

    Google Scholar 

  12. X.F. Zhang, W.L. Li, Vibration of arbitrarily-shaped triangular plates with elastically restrained edges. J. Sound Vib. 357, 195–206 (2015)

    Article  Google Scholar 

  13. R.R. Chaudhary, Y.R. Falak, Vibration analysis of laminated triangular plate by experimental and finite element analysis. Int. J. Eng. Res. Gen. Sci. 3(2), 786–791 (2015)

    Google Scholar 

  14. K.K. Pradhan, S. Chakraverty, Natural Frequencies of Equilateral Triangular Plates under Classical Edge Supports. Symposium on Statistical and Computational Modelling with Applications (2016), pp. 30–34

  15. A. Khanna, N. Kaur, Effect of thermal gradient on vibration of non-uniform visco-elastic rectangular plate. J. Inst. Eng. (India): Ser. C 97(2), 141–148 (2016)

    Google Scholar 

  16. A. Khanna, N. Kaur, Effect of structural parameters on vibration of non-homogeneous visco-elastic rectangular plate. J. Vib. Eng. Technol. 4(5), 459–466 (2016)

    MATH  Google Scholar 

  17. A. Khanna, N. Kaur, Theoretical study on vibration of non-homogeneous tapered visco-elastic rectangular plate. Proc. Natl. Acad. Sci. India Sect. A 86(2), 259–266 (2016)

    Article  MathSciNet  Google Scholar 

  18. A. Khanna, N. Kaur, Vibration analysis of nonhomogeneous tapered rectangular plate under thermal effect. Acta Technica 63(3), 353–368 (2018)

    Google Scholar 

  19. A. Khanna, N. Kaur, Effect of structural parameters on vibration of non-homogeneous visco-elastic rectangular plate. J. Vib. Eng. Technol. 4(5), 459–466 (2016)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narinder Kaur.

Ethics declarations

Conflict of Interest

The author has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, N. Vibrational Behavior of Tapered Triangular Plate with Clamped Ends under Thermal Condition. J. Inst. Eng. India Ser. C 101, 391–399 (2020). https://doi.org/10.1007/s40032-019-00551-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-019-00551-9

Keywords

Mathematics Subject Classification

Navigation