Skip to main content
Log in

Free Vibrations of Triangular Plates with a Hole*

  • Published:
International Applied Mechanics Aims and scope

The frequency and mode of free vibrations of thin isotropic triangular plates with a central hole for different boundary conditions are determined using the finite-element method. The topology of vibration modes for some plates is presented compared with square plates with hinged and clamped edges. To validate the numerical values of the natural frequencies and modes of triangular plates, an experimental method is proposed. It demonstrates a good agreement of the results with an error less than 6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Ya. Grigorenko, M. Yu. Borisenko, O. V. Boichuk, and V. S. Novitskii, “Usage of experimental and numerical methods to study the free vibrations of rectangular plates,” Probl. Vychisl. Mekh. Prochn. Konstr., No. 29, 103–112 (2019).

  2. O. Ya. Grigorenko, M. Yu. Borisenko, O. V. Boichuk, and V. S. Novitskii, “Numerical analysis of the free vibrations of rectangular plates using various approaches,” Visn. Zaporizskogo Nats. Univ, Ser. Fiz.-Mat. Nauky, No. 1, 33–41 (2020).

  3. A. V. Korobko and V. V. Gefel’, “Determining the fundamental frequency of vibrations and maximum deflection of plates using the SFIM,” Visn. TsRO RAASN, No. 5, 81–88 (2006).

  4. V. I. Korobko and O. V. Boyarkina, “Interconnection of problems of transverse bending and free vibrations of triangular plates,” Visnik YuUrGY, No. 22, 24–26 (2007).

  5. N. A. Chernyshev and A. D. Chernyshev, “Viscoelastic vibrations of a triangular plate,” Prikl. Mekh. Tekhn. Fiz., 42, No. 3, 152–158 (2001).

    MATH  Google Scholar 

  6. A. A. Chernyaev, “Dynamical design of hinged regular n-angular, triangular, and rhombic plates using the ratio of conformal radii as a geometrical argument,” Sroit. Mekh. Inzh. Sooruzh., No. 2, 63–71 (2012).

  7. C. G. Boay, “Free vibration of laminated composite plates with a central circular hole,” Compos. Struct., 35, No. 4, 357–368 (1996).

    Article  Google Scholar 

  8. M. Borysenko, A. Zavhorodnii, and R. Skupskyi, “Numerical analysis of frequencies and forms of own collars of different forms with free zone,” J. Appl. Math. Comput. Mech., 18, No. 1, 5–13 (2019).

    Article  MathSciNet  Google Scholar 

  9. V. D. Budak, A. Ya. Grigorenko, M. Yu. Borisenko, and E. V. Boychuk, “Determination of eigenfrequencies of an elliptic shell with constant thickness by the finite-element method,” J. Math. Sci., 212, No. 2, 182–192 (2016).

    Article  Google Scholar 

  10. V. D. Budak, A. Ya. Grigorenko, M. Yu. Borisenko, and E. V. Boychuk, “Natural frequencies and modes of vibrations of noncircular cylindrical shells with variable thickness,” Int. Appl. Mech., 53, No. 2, 167–172 (2017).

    Article  Google Scholar 

  11. A. Ya. Grigorenko, M. Y. Borisenko, O. V. Boychuk, and L. Y. Vasil’eva, “Free vibrations of an open non-circular shell of variable thickness,” in: H. Altenbach, N. Chinchaladze, R. Kienzler, and W. Muller. (eds.), Analysis of Shells, Plates, and Beams. Advanced Structured Materials, 134 (2020), pp. 141–154.

  12. A. Ya. Grigorenko, M. Y. Borysenko, E. V. Boychuk, and A. P. Prigoda, “Numerical determination of natural frequencies and modes of the vibrations of a thick-walled cylindrical shell,” Int. Appl. Mech., 54, No. 1, 75–84 (2018).

    Article  Google Scholar 

  13. F. Hegarty and T. Ariman, “Elasto-dynamic analysis of rectangular plates with circular holes,” Int. J. Solids Struct., 11, No. 7–8, 895–906 (1975).

    Article  Google Scholar 

  14. M. Huang and T. Sakiyama, “Free vibration analysis of rectangular plates with variously-shaped holes,” J. Sound Vibr., 226, No. 4, 769–786 (1999).

    Article  Google Scholar 

  15. W. Karunasena, S. Kitipornchai, and F. G. A. Al-Bermani, “Free vibration of cantilevered arbitrary triangular Mindlin plates,” Int. J. Mech. Sci., 38, No. 4, 431–442 (1996).

    Article  Google Scholar 

  16. K. Y. Lam, K. M. Liew, and S. T. Chow, “Free vibration analysis of isotropic and orthotropic triangular plates,” Int. J. Mech. Sci., 32, No. 5, 455–464 (1990).

    Article  Google Scholar 

  17. A. W. Leissa and N. A. Jaber, “Vibrations of completely free triangular plates,” Int. J. Mech. Sci., 34, No. 8, 605–616 (1992).

    Article  Google Scholar 

  18. C. Y. Wang, “Vibrations of completely free rounded regular polygonal plates,” Int. J. Acoust. Vibr., 20, No. 2, 107–112 (2015).

    Google Scholar 

  19. I. V. Yanchevskiy, “Excitation of the bending vibrations of a rectangular metal-piezoceramic plate by a nonstationary electric signal,” J. Math. Sci., 185, No. 6, 852–857 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ya. Grigorenko.

Additional information

*This study was sponsored by the budgetary program Support of Priority Areas of Research (KPKVK 6541230).

Translated from Prikladnaya Mekhanika, Vol. 57, No. 5, pp. 46–56, September–October 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorenko, O.Y., Borisenko, M.Y., Boichuk, O.V. et al. Free Vibrations of Triangular Plates with a Hole*. Int Appl Mech 57, 534–542 (2021). https://doi.org/10.1007/s10778-021-01104-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-021-01104-3

Keywords

Navigation