Skip to main content
Log in

Preparation of Fe–Ni Alloy Containing Low Cr and Ti from Red Mud Through Molten Salt Electrolysis

  • Case Study
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

The paper reports the preparation of iron–nickel alloy with low chromium (Cr) and titanium (Ti) from pre-treated red mud through molten salt electrolysis. The pre-treatment of red mud involves the heat treatment of red mud with Na2CO3 in a graphite crucible at a temperature of 1000 °C for 1 h followed by water leaching and drying. The electrolysis of pre-treated red mud is carried out in a molten CaCl2 bath at a temperature of 1000 °C taking heat-treated red mud as cathode and graphite as anode. The electrolysis of pre-treated red mud is carried out at a constant cell voltage of 3 V for 1 h in a molten CaCl2 bath at a temperature of 1000 °C to produce the iron–nickel alloy containing low chromium and titanium. The partially metalized phases (α-Fe, CrTi and NiTi) present in the pre-treated red mud accelerate the cathodic reduction during molten salt electrolysis to produce the said alloy and ultimately decrease the time period of electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. M. Mahinroosta, Z. Karimi, A. Allahverdi, in Reference Module in Materials Science and Materials Engineering (Elsevier, Amsterdam, 2019). https://doi.org/10.1016/B978-0-12-803581-8.11474-2

    Chapter  Google Scholar 

  2. S. Agrawal, V. Rayapudi, N. Dhawan, Proceedings 5(9), 17064 (2018)

    Google Scholar 

  3. L. Wang, G. Hu, F. Lyu, T. Yue, H. Tang, H. Han, Y. Yang, R. Liu, W. Sun, Minerals 9(5), 281 (2019)

    Article  Google Scholar 

  4. W. Liu, J. Yang, B. Xiao, J. Hazard. Mater. 161(1), 474 (2009)

    Article  Google Scholar 

  5. C.R. Borra, B. Blanpain, Y. Pontikes, K. Binnemans, T.V. Gerven, J. Sustain. Metall. 2(1), 28 (2016)

    Article  Google Scholar 

  6. A. He, J. Zeng, Mater. Des. 115, 433 (2017)

    Article  Google Scholar 

  7. G. Li, D. Wang, G.Z. Chen, J. Mater. Sci. Technol. Shenyang 25(6), 767 (2009)

    Google Scholar 

  8. C. Qi, Y. Hua, K. Chen, Y. Jie, Z. Zhou, J. Ru, L. Xiong, K. Gong, JOM 9, 9 (2015). https://doi.org/10.1007/s11837-015-1710-3

    Article  Google Scholar 

  9. Z. Zhou, Y. Hua, C. Xu, J. Li, Y. Li, Q. Zhang, Y. Zhang, W. Kuang, Ionics 9, 9 (2016). https://doi.org/10.1007/s11581-016-1810-2

    Article  Google Scholar 

  10. J. Mohanty, JOM 64(5), 582 (2012)

    Article  Google Scholar 

  11. D. Hu, A. Dolganov, M. Ma, B. Bhattachraya, M.T. Bishop, G.Z. Chen, JOM 70(2), 129–137 (2018)

    Article  Google Scholar 

  12. H. Nath, P. Sahoo, A. Sahoo, Powder Technol. 269, 233 (2015)

    Article  Google Scholar 

  13. Z. Quing, C. Jun, P. Jian, H. Zhen, J. Iron. Steel Res. Int. 19(8), 1 (2012)

    Article  Google Scholar 

  14. G.B. Dunks, D. Stelman, S.J. Yosim, Inorg. Chem. 21, 108 (1982)

    Article  Google Scholar 

  15. S.B. Jagtap, B.B. Kale, A.N. Gokarn, Carbothermic reduction of nickel oxide. Metall. Mater. Trans. B 23B, 93 (1992)

    Article  Google Scholar 

  16. T. Mori, J. Yang, M. Kuwabara, ISIJ Int. 47(10), 1387 (2007)

    Article  Google Scholar 

  17. G. Li, M. Liu, M. Rao, T. Jiang, J. Zhuang, Y. Zhang, J. Hazard. Mater. 280, 774 (2014)

    Article  Google Scholar 

  18. D. Vishnu, N. Sanil, L. Shakila, R. Sudha, K.S. Mohandas, K. Nagarajan, Electrochem. Acta 159, 124 (2015)

    Article  Google Scholar 

  19. M. Panigrahi, E. Shibata, A. Lizuka, T. Nakamura, Electrochem. Acta 93, 143 (2013)

    Article  Google Scholar 

  20. L. Xiong, Y. Hua, C. Xu, J. Li, Q. Zhang, Z. Zhou, Y. Zhang, J. Ru, J. Alloys Compd. 676, 383 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Science and Engineering Research Board, DST, Govt. of India, for financial sanction (Sanction Order No. SB/FT/CS-135/2014) to carry out the work. The author also acknowledges STIC, Cochin University of Science and Technology, Kerala, India, for characterizing the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayashree Mohanty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, J., Muduli, R.C. Preparation of Fe–Ni Alloy Containing Low Cr and Ti from Red Mud Through Molten Salt Electrolysis. J. Inst. Eng. India Ser. C 101, 401–406 (2020). https://doi.org/10.1007/s40032-019-00543-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-019-00543-9

Keywords

Navigation