Skip to main content
Log in

Finite Element Analysis and Comparison of the Machinability of SiCp/Al Composite and CNT/Al Composite

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Metal matrix composites are widely used in aerospace and automotive industries due to their extraordinarily attractive physical and mechanical behavior. In order to compare the machining property of SiCp/Al composite and CNT/Al composite, the two-dimensional orthogonal cutting finite element models were developed by the finite element analysis software ABAQUS/Explicit. The comparison of SiCp/Al composite and CNT/Al composite on the basis of surface quality, sub-surface damage and edge quality was tried out in order to know the machinability of two materials. The results show that the machined surface defects such as small pits, large voids, tear of the matrix and particle breakage are commonly observed during machining of SiCp/Al composite, and the surface residual stress changes from compressive stress to tensile stress. However, there are some large holes, bulges matrix fracture and particle fracture on the machined surface of CNT/Al composite, and the residual stress is mainly compressive stress. Therefore, at the equal reinforcement effect, the machinability of CNT/Al composite is better than that of SiCp/Al composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Shimizu, L.B. Zhou, H. Eda, Simulation and experimental analysis of super high-speed grinding of ductile material. J. Mater. Process. Technol. 129, 19–24 (2002)

    Article  Google Scholar 

  2. K.B. Lee, H. Kown, Interfacial reactions in SiCp/Al composite fabricated by pressureless infiltration. Scr. Mater. 36(8), 847–852 (1997)

    Article  Google Scholar 

  3. W.R. Mohn, D. Vukobratovich, Recent applications of metal matrix composites in precision instruments and optical systems. J. Mater. Eng. 10(3), 225–235 (1988)

    Article  Google Scholar 

  4. Y. Cui, L.F. Wang, J.Y. Ren, Multi-functional SiC/Al composites for aerospace applications. Chin. J. Aeronaut. 21(6), 578–584 (2008)

    Article  Google Scholar 

  5. A.L. Geiger, J.A. Walker, The processing and properties of discontinuously reinforced aluminum composites. JOM 43(8), 8–15 (1991)

    Article  Google Scholar 

  6. Y.F. Ge, J.H. Xu, H. Yang, S.B. Luo, Y.C. Fu, Workpiece surface quality when ultra-precision turning of SiCp/Al composites. J. Mater. Process. Technol. 203(1–3), 166–175 (2008)

    Article  Google Scholar 

  7. Y.F. Yang, Q. Wu, Z.B. Zhan, L. Li, N. He, R. Shrestha, An experimental study on milling of high-volume fraction SiC P/Al composites with PCD tools of different grain size. Int. J. Adv. Manuf. Technol. 79(9–12), 1699–1705 (2015)

    Article  Google Scholar 

  8. S.X. Lu, H. Gao, Y.J. Bao, Q.H. Xu, A model for force prediction in grinding holes of SiCp/Al composites. Int. J. Mech. Sci. 160, 1–14 (2019)

    Article  Google Scholar 

  9. C. Shoba, N. Ramanaiah, D.N. Rao, Influence of dislocation density on the residual stresses induced while machining Al/SiC/RHA hybrid composites. J. Mater. Res. Technol. 4(3), 273–277 (2015)

    Article  Google Scholar 

  10. J.F. Xiang, L.J. Xie, F.N. Gao, J. Yi, S.Q. Pang, X.B. Wang, Diamond tools wear in drilling of SiCp/Al matrix composites containing copper. Ceram. Int. 44(5), 5341–5351 (2018)

    Article  Google Scholar 

  11. J.P. Davim, Diamond tool performance in machining metal-matrix composites. J. Mater. Process. Technol. 128, 100–105 (2002)

    Article  Google Scholar 

  12. T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito, Processing of carbon nanotube reinforced aluminum composite. J. Mater. Res. 13(9), 2445–2449 (1998)

    Article  Google Scholar 

  13. R. George, K.T. Kashyap, R. Rahul, S. Yamdagni, Strengthening in carbon nanotube/aluminium (CNT/Al) composites. Scr. Mater. 53(10), 1159–1163 (2005)

    Article  Google Scholar 

  14. H.T. Cong, R. Zhong, H.M. Cheng, K. Lu, Reinforcing effects of SWNTs associated with nano-Al base. Chin. J. Mater. Res. 17(2), 132–137 (2003)

    Google Scholar 

  15. Y. Feng, H.L. Yuan, M. Zhang, Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes. Mater. Charact. 55(3), 211–218 (2005)

    Article  Google Scholar 

  16. Q. Liu, L. Ke, F. Liu, C. Huang, L. Xing, Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing. Mater. Des. 45, 343–348 (2013)

    Article  Google Scholar 

  17. M.R. Akbarpour, A. Pouresmaeil, The influence of CNTs on the microstructure and strength of Al-CNT composites produced by flake powder metallurgy and hot pressing method. Diam. Relat. Mater. 88, 6–11 (2018)

    Article  Google Scholar 

  18. X.D. Yang, T.C. Zou, C.S. Shi, E.Z. Liu, C.N. He, N.Q. Zhao, Effect of carbon nanotube (CNT) content on the properties of in situ synthesis CNT reinforced Al composites. Mater. Sci. Eng. A 660(13), 11–18 (2016)

    Article  Google Scholar 

  19. Z.Y. Liu, K. Zhao, B.L. Xiao, W.G. Wang, Z.Y. Ma, Fabrication of CNT/Al composites with low damage to CNTs by a novel solution-assisted wet mixing combined with powder metallurgy processing. Mater. Des. 97(5), 424–430 (2016)

    Article  Google Scholar 

  20. J. Zhang, Q.B. Ouyang, Q. Guo, D. Zhang, 3D microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites. Compos. Sci. Technol. 123(8), 1–9 (2016)

    Google Scholar 

  21. L. Zhou, C. Cui, P.F. Zhang, Z.Y. Ma, Finite element and experimental analysis of machinability during machining of high-volume fraction SiCp/Al composites. Int. J. Adv. Manuf. Technol. 91, 1935–1944 (2017)

    Article  Google Scholar 

  22. U.A. Dabade, S.S. Joshi, R. Balasubramaniam, V.V. Bhanuprasad, Surface finish and integrity of machined surfaces on Al/SiCp composites. J. Mater. Process. Technol. 192–193, 166–174 (2007)

    Article  Google Scholar 

  23. A. Pramanik, L.C. Zhang, J.A. Arsecularatne, Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation. Int. J. Mach. Tools Manuf. 48, 1613–1625 (2008)

    Article  Google Scholar 

  24. P.J. Arrazola, A. Kortabarria, A. Madariaga, J.A. Esnaola, E. Fernandez, C. Cappellini, D. Ulutan, T. Özel, On the machining induced residual stresses in IN718 nickel-based alloy: experiments and predictions with finite element simulation. Simul. Model Pract. Theory 41, 87–103 (2014)

    Article  Google Scholar 

  25. T. Wang, L.J. Xie, X.B. Wang, Simulation study on defect formation mechanism of the machined surface in milling of high volume fraction SiCp/Al composite. Int. J. Adv. Manuf. Technol. 79(5–8), 1185–1194 (2015)

    Article  Google Scholar 

  26. L. Zhou, Y. Wang, Z.Y. Ma, X.L. Yu, Finite element and experimental studies of the formation mechanism of edge defects during machining of SiCp/Al composites. Int. J. Mach. Tool. Manuf. 84, 9–16 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the Natural Science Foundation of Shandong Province (ZR2019MEE074) and National Natural Science Foundation of China (51175353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P.F., Zhou, L. & Ran, Y.C. Finite Element Analysis and Comparison of the Machinability of SiCp/Al Composite and CNT/Al Composite. J. Inst. Eng. India Ser. C 101, 323–329 (2020). https://doi.org/10.1007/s40032-019-00540-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-019-00540-y

Keywords

Navigation