Dynamic State or Whole Field Analysis of Helical Gear

  • Prashant Jaysing Patil
  • Maharudra S. Patil
  • Krishnakumar D. Joshi
Original Contribution
  • 39 Downloads

Abstract

To determine the true bending stresses at the root of the tooth is an important and crucial step in accurate design of the gears. The present work has been intended for bending stress analysis at critical section of helical gear tooth under dynamic state by different methods. The photo stress coating method along with reflection polariscope was used as experimental method. Velocity factor method and Spott’s equation method have been used to estimate dynamic load and bending stress at critical section of tooth. LS DYNA software has been used for finite element analysis under dynamic state. The results show that the experiment photo stress method gives bending stress closer to the true value in dynamic conditions amongst all method under consideration. Finally, the study proposes the correction factor for velocity factor method and Spott’s equation method to estimate true bending stress at tooth root with respect to experimental method.

Keywords

Helical gear Whole field analysis Photostress analysis Finite element analysis Pressure angle Helix angle 

References

  1. 1.
    J.I. Pedrero, A. Rueda, A. Fuentes, Determination of ISO tooth form factor for involute spur and helical gears. Mech. Mach. Theory 34(1), 89–103 (1999)CrossRefMATHGoogle Scholar
  2. 2.
    E. Conrado, P. Davoli, The true bending stress in spur gears. J. Mech. Des. ASME 134(1), 1–13 (2007)Google Scholar
  3. 3.
    G.C. Luh, R.M. Hwang, Measuring non-uniform residual stress in thin plates by a proposed hole-drilling strain gauge method. Int. J. Adv. Manuf. Technol. 15(2), 103–113 (1999)CrossRefGoogle Scholar
  4. 4.
    A. Kawalec, J. Wiktor, D. Ceglarek, Comparitive analysis of tooth-root strength using ISO and AGMA standards in spur and helical gears with FEM-based verification. J. Mech. Des. ASME 128, 1141–1158 (2006)CrossRefGoogle Scholar
  5. 5.
    J. Tombasco, Photoelastic dynamic structural analysis using synchronized strobe technique. Department of Aerospace Engineering, Pennsylvania State University Park, PA-10802 (2004)Google Scholar
  6. 6.
    P. Wayluda, D. Wolf, Examination of finite element analysis and experimental results of quasi-statically loaded acetal copolymer gears. Trans. ASME 34, 1159–1163 (1973)Google Scholar
  7. 7.
    H.P. Rossamanith, A. Shukla, Dynamic photoelastic investigation of interaction of stress waves running cracks. Exp. Mech. 275, 209–228 (1981)Google Scholar
  8. 8.
    J.R. Lesniak, M.J. Zickle, C.S. Welch, D.F. Johnson, An Innovative Polariscope for Photoelastic Stress Analysis (Stress Photonics Inc., Madison, 1987)Google Scholar
  9. 9.
    T.W. Carby, W.E. Nickola, Residual strain using photoelastic coating. Opt. Lasers Eng. 27(1), 113–123 (1997)Google Scholar
  10. 10.
    G. Calvert, J. Lesniak, M. Honlet, Applications of modern automated photoelasticity to industrial problems. Real Time Stress Monit. 44(4), 224–227 (2002)Google Scholar
  11. 11.
    I. Atanskovoska, M.V. Popovic, Z. Starcevic, The dynamic behaviour of gears with high transmission ratio. Int. J. Traffic Transp. Eng. 2(2), 153–160 (2012)Google Scholar
  12. 12.
    B. Kozlowska, Two-dimensional experimental elastic-plastic strain and stress analysis. J. Theor. Appl. Mech. 52, 419–430 (2013)Google Scholar
  13. 13.
    A. Ajovalasit, S. Barone, G. Petricchi, Towards RGB photoelasticity: full field automated photoelasticity in white light. Exp. Mech. 35(3), 193–200 (1995)CrossRefGoogle Scholar
  14. 14.
    D.G. Berghaus, Combining photoelasticity and finite-element methods for stress analysis using least squares. Exp. Mech. 31(1), 36–41 (1991)CrossRefGoogle Scholar
  15. 15.
    R.J. Sanford, L.A. Beaubien, Stress analysis of a complex part: photoelasticity vs. finite elements. Exp. Mech. 17(12), 441–448 (1977)CrossRefGoogle Scholar
  16. 16.
    R. Sharma, V.K. Jadon, B. Singh, A review on finite element methods for heat conduction in functionally graded materials. J. Inst. Eng. (India) Ser. C 96(1), 73–81 (2015)CrossRefGoogle Scholar
  17. 17.
    C. Taudou, K. Ravi-Chandar, Experimental determination of the dynamic stress-intensity factor using caustics and photoelasticity. Exp. Mech. 32(3), 303–310 (1992)CrossRefGoogle Scholar
  18. 18.
    Micromeasurements, Technical note TN-702-1Google Scholar
  19. 19.
    M.R. Kang, A. Kahraman, An experimental and theoretical study of the dynamic behavior of double- helical gear. J. Sound Vib. 350, 11–20 (2015)CrossRefGoogle Scholar
  20. 20.
    Micromeasurements, Technical note TN-702-2Google Scholar
  21. 21.
    K.G. Raptis, T.N. Costopoulos, G.A. Papadopoulos, A.D. Tsolakis, Rating of spur using photoelasticity and the finite element method. Am. J. Eng. Appl. Sci. 3, 222–231 (2010)CrossRefGoogle Scholar
  22. 22.
    M. Madavi, R. Venkat, Predicting structural behavior of filament wound composite pressure vessel using 3D shell analysis. J. Inst. Eng. (India) Ser. C 95(1), 41–50 (2014)CrossRefGoogle Scholar
  23. 23.
    Y.-J. Wu, J.-J. Wang, Q.-K. Han, Static/dynamic contact FEA and experimental study for tooth profile modification of helical gears. J. Mech. Sci. Technol. 26(5), 1409–1417 (2012)CrossRefGoogle Scholar
  24. 24.
    V. Spitas, G.A. Papadopoulos, C. Spitas, T. Costopoulos, Experimental investigation of load sharing in multiple gear tooth contact using the stress-optical method of caustics (Blackwell, Hoboken, 2009)MATHGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2017

Authors and Affiliations

  • Prashant Jaysing Patil
    • 1
  • Maharudra S. Patil
    • 2
  • Krishnakumar D. Joshi
    • 3
  1. 1.Vishvesharaya Technological UniversityBelagaviIndia
  2. 2.Gogte Institute of TechnologyBelagaviIndia
  3. 3.Department of Mechanical EngineeringTatyasaheb Kore Institute of Engineering and TechnologyWarananagar, KolhapurIndia

Personalised recommendations