Skip to main content
Log in

Semiconductor III–V Nanowires: Synthesis, Fabrication and Characterization of Nanodevices

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

The concept of semiconductor and its vital applications around different areas have shown a new way to the scientists and researchers for developing and conducting experiments toward a better tomorrow for the industries and manufacturing units. Nanowires especially have been a key point for the researchers since last few years due to their enormous inner advantages and application in many areas such as nanoscience, optical electronics and photonics. The objective of this review paper is basically to explain regarding the fabrication process of nanodevices based on III–V nanowires. So, in this theoretical review we have explained some of the basic concepts and key features of nanowires, semiconductor materials, SSCVD growth mechanism, device applications and fabrication mechanism of single nanowire devices using EBL technique. This review paper comprises almost every aspect of III–V nanowires and how is it playing a key role in designing nanodevices. The III–V nanowire fabrication methods (especially top-down and bottom-up approach) have been explained with illustration prior to explaining the fabrication of nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P. Kanungo, H. Schmid et al., Selective area growth of III–V Nanowires and their heterostructures on Silicon in a nanotube template: towards monolithic integration of nano-devices. IOP Publ. Nanotechnol. 24(22), 6 (2013)

    Google Scholar 

  2. L.T.M. Mastro, A. Dadgar, III-V Compound Semiconductors Integration with Silicon-Based Microelectronics (CRC Press, Taylor and Francis, Boca Raton, London, 2010)

    Google Scholar 

  3. P. Yan, D. Gargas, P.D. Yang, Nanowire photonics. Nat. Photon 3, 569–576 (2009)

    Article  Google Scholar 

  4. E.W. Weisstein, (n.d.). Solid state physics: from Eric Weisstein’s world of physics. Wolfram Research, Inc. Retrieved from http://scienceworld.wolfram.com/physics/SolidStatePhysics.html

  5. https://www.tf.uni kiel.de/matwis/amat/semitech_en/kap_2/illustr/i2_1_2.html

  6. M. Fang, N. Han et al., III–V nanowires: synthesis, property manipulations, and device applications. J. Nanoelectron. (2014). https://doi.org/10.1155/2014/702859

    Article  Google Scholar 

  7. W. Lu, C.M. Lieber, Semiconductor nanowires. J. Phys. D Appl. Phys. 39(21), R387–R406 (2006)

    Article  Google Scholar 

  8. Z.-X. Yang, F. Wang, N. Han et al., Crystalline GaSb nanowires synthesized on amorphous substrates: from the formation mechanism to p-channel transistor applications. ACS Appl. Mater. Interfaces. 5(21), 10946–10952 (2013)

    Article  Google Scholar 

  9. N. Han, F. Wang, A.T. Hui et al., Facile synthesis and growth mechanism of Ni-catalyzed GaAs nanowires on non-crystalline substrates. Nanotechnology 22(28), 285607 (2011)

    Article  Google Scholar 

  10. O. Hayden, R. Agarwal et al., Semiconductor nanowire devices. Nano Today 3, 5–6 (2008)

    Article  Google Scholar 

  11. N. Dhindsa, S.S. Saini, Top-down fabricated tapered GaAs nanowires with sacrificial etching of the mask. Nanotechnol. IOPSc. 28(23), 235301 (2017)

    Article  Google Scholar 

  12. M.T. Borgstrom, G. Immink et al., “Synergetic nanowire growth. Nat. Nanotechnol. 2, 541–544 (2007)

    Article  Google Scholar 

  13. M. De la Mata et al., Polarity assignment in ZnTe, GaAs, ZnO, and GaN–AlN nanowires from direct dumbbell analysis. Nano Lett. 12, 2579–2586 (2012)

    Article  Google Scholar 

  14. N. Han, F. Wang, S. Yip et al., GaAs nanowire Schottky barrier photovoltaics utilizing Au–Ga alloy catalytic tips. Appl. Phys. Lett. 101(1), 013105 (2012)

    Article  Google Scholar 

  15. X. Liu, Y.-Z. Long, L. Liao, X. Duan, Z. Fan, Large-scale integration of semiconductor nanowires for high-performance flexible electronics. ACS Nano 6(3), 1888–1900 (2012)

    Article  Google Scholar 

  16. Y. Zhag, J. Wu et al., III-V nanowires and nanowire optoelectronic devices. J. Phys. D: Appl. Phys. IOP Sci. 48(46), 463001 (2015)

    Article  Google Scholar 

  17. P. Yang, R. Yan, M. Fardy, Nano Lett. 10, 1529–1536 (2010)

    Article  Google Scholar 

  18. A.M. Munshi et al., Nano Lett. 14, 960–966 (2014)

    Article  Google Scholar 

  19. A. Schmitz, A. Ping, Gallium Nitride (GAN) II”, 1996

  20. https://www.waferworld.com/si-wafer-top-10-facts/

  21. E. Camargo, Switch. Devices Based Photonic Cryst. Channel Waveguides (2004). https://doi.org/10.13140/2.1.2129.5044

    Article  Google Scholar 

  22. A. Sood, Z. Wang and Polla et al. “ZnO Nanostructures for Optoelectronic Applications.” https://doi.org/10.5772/16202, 2011

  23. R.F. Peters, L. Gutierrez-Rivera, S. Dew, M. Stepanova, Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates. J. Vis. Exp. (2015). https://doi.org/10.3791/52712

    Article  Google Scholar 

  24. R.-S. Chen, H.-Y. Chen, C.-Y. Lu, K.-H. Chen, C.-P. Chen, L.-C. Chen, Y.-J. Yang, Ultrahigh photocurrent gain in m-axial GaN nanowires. App. Phys. Lett. 91(22), 223106 (2007). https://doi.org/10.1063/1.2817595

    Article  Google Scholar 

  25. H. Xiao, H. Liu, Z. Li et al., Anisotropic Swelling and Fracture of Silicon Nanowires During Lithiation. 2011

  26. E.D. Minot, F. Kelkensberg et al., Single quantum dot nanowire LEDs. Nano lett. 7(2), 367–71 (2007). https://doi.org/10.1021/nl062483w

    Article  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Agarwal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, A., Misra, G. & Agarwal, K. Semiconductor III–V Nanowires: Synthesis, Fabrication and Characterization of Nanodevices. J. Inst. Eng. India Ser. B 103, 699–709 (2022). https://doi.org/10.1007/s40031-021-00671-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-021-00671-w

Keywords

Navigation