Skip to main content
Log in

Antibiotic Interactions with Key Algal Proteins Responsible for Photosynthesis: Molecular Docking-Based Correlates

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

The use of antibiotics has increased significantly recently. Humans and animals are unable to metabolize antibiotics completely. So, these antibiotics are released into the aquatic environments. Different blue-green and green algae are the major non-target organisms affected by antibiotics except bacteria. This study showed that antibiotics inhibit different proteins that are required for photosynthesis. Data showed that gentamicin, ampicillin, chloramphenicol, erythromycin, and rifamycin majorly affected the PSI proteins, whereas iclaprim, clindamycin, sulfadiazine, and tetracycline affected the PSII proteins. Two antibiotics, viz., ciprofloxacin, and nalidixic acid targeted cytochrome (cyt b6f). Results proved that rifamycin, erythromycin, and tetracycline were highly toxic with the lowest binding energies of −12.22, −12.13, and −10.45 kcal/mol. LigPlot + software revealed the binding site of the proteins for the antibiotics and the atoms responsible for hydrogen and hydrophobic interactions. This study helps to identify the possible mode-of-action for the antibiotics towards non-target organisms by further experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. X Liang B Chen X Nie Z Shi X Huang X Li 2013 The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China Chemosphere 92:1410–1416. https://doi.org/10.1016/j.chemosphere.2013.03.044

    Article  CAS  PubMed  Google Scholar 

  2. TP Boeckel Van S Gandra A Ashok Q Caudron BT Grenfell SA Levin R Laxminarayan 2014 Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data Lancet Infect Dis 14:742–750. https://doi.org/10.1016/S1473-3099(14)70780-7

    Article  PubMed  Google Scholar 

  3. AJ Tamhankar SS Karnik CS Lundborg 2018 Determinants of antibiotic consumption-development of a model using partial least squares regression based on data from India Sci Rep 8:1–9. https://doi.org/10.1038/s41598-018-24883-1

    Article  CAS  Google Scholar 

  4. TP Boeckel Van C Brower M Gilbert BT Grenfell SA Levin TP Robinson A Teillant R Laxminarayan 2015 Global trends in antimicrobial use in food animals Proc Natl Acad Sci 112:5649–5654. https://doi.org/10.1073/pnas.1503141112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. K Balakrishna A Rath Y Praveenkumarreddy KS Guruge B Subedi 2017 A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies Ecotoxicol Environ Saf 137:113–120. https://doi.org/10.1016/j.ecoenv.2016.11.014

    Article  CAS  PubMed  Google Scholar 

  6. PK Mutiyar AK Mittal 2014 Occurrences and fate of selected human antibiotics in influents and effluents of sewage treatment plant and effluent-receiving river Yamuna in Delhi (India) Environ Monit Assess 186:541–557. https://doi.org/10.1007/s10661-013-3398-6

    Article  CAS  PubMed  Google Scholar 

  7. TC Smith WA Gebreyes MJ Abley AL Harper BM Forshey MJ Male HW Martin BZ Molla S Sreevatsan S Thakur M Thiruvengadam PR Davies 2013 Methicillin-resistant Staphylococcus aureus in pigs and farm workers on conventional and antibiotic-free swine farms in the USA PLoS ONE 8:e63704. https://doi.org/10.1371/journal.pone.0063704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. W Deng N Li H Zheng H Lin 2016 Occurrence and risk assessment of antibiotics in river water in Hong Kong Ecotoxicol Environ Saf 125:121–127. https://doi.org/10.1016/j.ecoenv.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  9. DJ Fairbairn ME Karpuzcu WA Arnold BL Barber EF Kaufenberg WC Koskinen PJ Novak PJ Rice DL Swackhamer 2016 Sources and transport of contaminants of emerging concern: a two-year study of occurrence and spatiotemporal variation in a mixed land use watershed Sci Total Environ 551:605–613. https://doi.org/10.1016/j.scitotenv.2016.02.056

    Article  CAS  PubMed  Google Scholar 

  10. Y Liu Y Wang J Zhang L Sun A Zhang OL Torres R Guo J Chen 2017 An integrated assessment of ceftazidime and photoproducts on the feeding behavior of rotifers: From exposure to post-exposure Ecotoxicol Environ Saf 144:245–251. https://doi.org/10.1016/j.ecoenv.2017.06.039

    Article  CAS  PubMed  Google Scholar 

  11. BY Liu XP Nie WQ Liu P Snoeijs C Guan MT Tsui 2011 Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole on photosynthetic apparatus in Selenastrum capricornutum Ecotoxicol Environ Saf 74:1027–1035. https://doi.org/10.1016/j.ecoenv.2011.01.022

    Article  CAS  PubMed  Google Scholar 

  12. HY Kim J Jeon J Hollender S Yu SD Kim 2014 Aqueous and dietary bioaccumulation of antibiotic tetracycline in D. magna and its multigenerational transfer J Hazard Mater 279:428–435. https://doi.org/10.1016/j.jhazmat.2014.07.031

    Article  CAS  PubMed  Google Scholar 

  13. R Guo W Xie J Chen 2015 Assessing the combined effects from two kinds of cephalosporins on green alga (Chlorella pyrenoidosa) based on response surface methodology Food Chem Toxicol 78:116–121. https://doi.org/10.1016/j.fct.2015.02.007

    Article  CAS  PubMed  Google Scholar 

  14. L Aristilde A Melis G Sposito 2010 Inhibition of photosynthesis by a fluoroquinolone antibiotic Environ Sci Technol 44:1444–1450. https://doi.org/10.1021/es902665n

    Article  CAS  PubMed  Google Scholar 

  15. SY Netzer-El I Caspy N Nelson 2019 Crystal structure of photosystem I monomer from Synechocystis PCC 6803 Front Plant Sci 9:1865. https://doi.org/10.3389/fpls.2018.01865

    Article  PubMed  PubMed Central  Google Scholar 

  16. M Broser A Gabdulkhakov J Kern A Guskov F Müh W Saenger A Zouni 2010 Crystal structure of monomeric photosystem II from Thermosynechococcus elongatus at 3.6-Å resolution J Biol Chem 285:26255–26262. https://doi.org/10.1074/jbc.M110.127589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. DI Liao J Qian DA Chisholm DB Jordan BA Diner 2000 Crystal structures of the photosystem II D1 C-terminal processing protease Nat Struct Biol 7:749–753. https://doi.org/10.1038/78973

    Article  CAS  PubMed  Google Scholar 

  18. S Jin J Sun T Wunder D Tang AB Cousins SK Sze O Mueller-Cajar YG Gao 2016 Structural insights into the LCIB protein family reveals a new group of β-carbonic anhydrases Proc Natl Acad Sci 113:14716–14721. https://doi.org/10.1073/pnas.1616294113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J Schnackenberg ME Than K Mann G Wiegand R Huber W Reuter 1999 Amino acid sequence, crystallization and structure determination of reduced and oxidized cytochrome c6 from the green alga Scenedesmus obliquus J Mol Biol 290:1019–1030. https://doi.org/10.1006/jmbi.1999.2944

    Article  CAS  PubMed  Google Scholar 

  20. G Kurisu H Zhang JL Smith WA Cramer 2003 Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity Science 302:1009–1014. https://doi.org/10.1126/science.1090165

    Article  CAS  PubMed  Google Scholar 

  21. MT Bes E Parisini LA Inda LM Saraiva ML Peleato GM Sheldrick 1999 Crystal structure determination at 1.4 Å resolution of ferredoxin from the green alga Chlorella fusca Structure 7:1201–S2. https://doi.org/10.1016/S0969-2126(00)80054-4

    Article  CAS  PubMed  Google Scholar 

  22. MR Redinbo D Cascio MK Choukair D Rice S Merchant TO Yeates 1993 The 1.5-. ANG crystal structure of plastocyanin from the green alga Chlamydomonas reinhardtii Biochemistry 32:10560–10567. https://doi.org/10.1021/bi00091a005

    Article  CAS  PubMed  Google Scholar 

  23. JA Ahmed 2019 Molecular docking study of binding modes of amphetamine, cathine, and cathinone to monoamine oxidase B Al-Azhar Assiut Med J 17:354. https://doi.org/10.4103/AZMJ.AZMJ_75_19

    Article  Google Scholar 

  24. F Noé S Fischer 2008 Transition networks for modeling the kinetics of conformational change in macromolecules Curr Opin Struct Biol 18:154–162. https://doi.org/10.1016/j.sbi.2008.01.008

    Article  CAS  PubMed  Google Scholar 

  25. Z Rezaei M Fereidoonnezhad Z Faghih H Sadeghpur A Mojaddami A Sakhteman 2017 Comparison of docking procedures and its efficiency for Betasecretase, Aromatase and Pyruvate dehydrogenase kinase inhibitors Trends Pharmacol Sci 3:31–42

    CAS  Google Scholar 

  26. Prasad R, Banerjee S, Kharshiing CE, Bhattacharjee A, Prasad SB (2019) Rutin-mediated apoptosis and glutathione changes in ascites daltons lymphoma cells: In silico analysis of rutin interactions with some antiapoptotic and glutathione-related proteins. Indian J Pharm Sci 81:720–728. https://doi.org/10.36468/pharmaceutical-sciences.563

  27. GM Morris R Huey W Lindstrom MF Sanner RK Belew DS Goodsell AJ Olson 2009 AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. PA Ravindranath S Forli DS Goodsell AJ Olson MF Sanner 2015 AutoDockFR: advances in protein-ligand docking with explicitly specified binding site flexibility PLoS Comput Biol 11:e1004586. https://doi.org/10.1371/journal.pcbi.1004586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. RA Laskowski MB Swindells 2011 LigPlot+: multiple ligand–protein interaction diagrams for drug discovery J Chem Inf Model 51:2778–2786. https://doi.org/10.1021/ci200227u

    Article  CAS  Google Scholar 

  30. RY Stanier G Cohen-Bazire 1977 Phototrophic prokaryotes: the cyanobacteria Annu Rev Microbiol 31:225–274. https://doi.org/10.1146/annurev.mi.31.100177.001301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the management of VIT, Vellore for providing the research facilities. The authors did not receive any specific grants from funding agencies in the public, commercial, or non-profit sectors for the implementation of this in silico work.

Author information

Authors and Affiliations

Authors

Contributions

BR and PKS designed the experiment. BR performed the experiment. BR and PKS analyzed the data. BR wrote the original manuscript and PKS reviewed the same. The authors declare that they have no conflicts of interest.

Corresponding author

Correspondence to Suresh P. K..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Significance Statement: Our in-silico analyses have shown differences in the binding affinity of antibiotics for targets in blue-green versus green algal systems. Also, docking results point towards PSI and PSII proteins, as being significant photosynthesis-related targets.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, B., Suresh, P.K. Antibiotic Interactions with Key Algal Proteins Responsible for Photosynthesis: Molecular Docking-Based Correlates. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 91, 715–725 (2021). https://doi.org/10.1007/s40011-021-01283-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-021-01283-6

Keywords

Navigation