Skip to main content
Log in

Genetic Diversity and Population Structure of Kenyan Common Bean (Phaseolus vulgaris L.) Germplasm Using Peroxidase Gene Markers

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Common bean (Phaseolus vulgaris L.) is a vital legume used as human food, source of cash income, feed for livestock, and it increases the fertility of soil by its ability to fix nitrogen. The aim of this research was to determine the genetic diversity and population structure of 40 common bean germplasm cultivated in Kenya, using peroxidase gene (POX)-based molecular markers. The loci analyzed showed high diversity and amplified 624 alleles, ranging from 3 to 9 on every locus, with an average of 7.20. The PIC of the POX markers varied from 0.6204 to 0.9110, with an average of 0.7677. The range of the observed heterozygosity was from 0.6667 to 0.9150 with a mean of 0.7945, while the values of the mean genetic diversity ranged from 0.3072 to 0.4425 with a mean of 0.3972. The UPGMA phenogram separated the genotypes into two main genetic clusters, and the genotypes showed no grouping by geographical origins. The highest value of genetic variation was observed between the genotypes obtained from Western, Rift valley and Central regions of Kenya. Population structure analysis grouped the germplasm into 7 gene pools and showed that the genotypes have a common genetic lineage. AMOVA revealed higher genetic diversity (99%) within population than among population (1%), and this offers a reliable base for the design of genetic improvement schemes. Results of the present study can be used in future breeding programs and for the genetic improvement in common bean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rezende AA, Pacheco MTB, Silva VSN, Ferreira TAPC (2018) Nutritional and protein quality of dry Brazilian beans (Phaseolus vulgaris L.). Food Sci Technol 38:421–427

    Article  Google Scholar 

  2. Blair MW, Paulo I, Astudillo C, Grusak MA (2013) A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans. Front Plant Sci 10:3389

    Google Scholar 

  3. Sajad MZ, Muslima N, Vandna R, Martin H, Ganesh KA, Randeep R (2015) Towards a common bean proteome atlas: looking at the current state of research and the need for a comprehensive proteome. Front Plant Sci 6:201

    Google Scholar 

  4. Valentini G, Gonçalves-Vidigal MC, Elias JCF, Moiana LD, Mindo NNA (2019) Population structure and genetic diversity of common bean accessions from Brazil. Plant Mol Biol Rep 36:5–6

    Google Scholar 

  5. Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A, Labhane N, Özkan H (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32(2):261–285

    Article  CAS  Google Scholar 

  6. Svetleva D, Pereira G, Carlier J, Cabrita L, Leitao J, Genchev D (2006) Molecular characterization of Phaseolus vlugaris L. genotypes included in Bulgarian collection by ISSR and AFLP analyses. Sci Hort 109:198–206

    Article  CAS  Google Scholar 

  7. Nodari RO, Koinange EM, Kelly JD, Gepts P (1992) Towards an integrated linkage map of common bean: development of genomic DNA probes and levels of restriction fragment length polymorphism. Theor Appl Genet 84:186–192

    Article  CAS  Google Scholar 

  8. Marotti I, Bonetti A, Minelli M, Catizone P, Dinelli G (2007) Characterization of some Italian common bean (Phaseolus Vulgaris L.) landraces by RAPD, semi-random and ISSR molecular markers. Genet Resour Crop Evol 54(1):175–188

    Article  CAS  Google Scholar 

  9. Asfaw A, Blair MW, Almekinders C (2009) Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from the East African highlands. Theor Appl Genet 120:1–12

    Article  Google Scholar 

  10. Gyang PJ, Nyaboga EN, Muge EK (2017) Molecular characterization of common bean (Phaseolus vulgaris L.) genotypes using microsatellite markers. J Adv Biol Biotechnol 13(2):1–15

    Article  Google Scholar 

  11. Nemli S, Kaya HB, Tanyolac B (2014) Genetic assessment of common bean (Phaseolus vulgaris L.) accessions by peroxides gene-based markers. J Sci Food Agric 94(8):1672–1680

    Article  CAS  Google Scholar 

  12. Collard BCY, Mackill DJ (2009) Conserved DNA-derived polymorphism (CDDP): a simple and novel method for generating DNA markers in plants. Plant Mol Biol Rep 27:558–562

    Article  CAS  Google Scholar 

  13. Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JPT, Hyvönen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9:6

    Article  CAS  Google Scholar 

  14. Gulsen O, Kaymak S, Ozongun S, Uzun A (2010) Genetic analysis of Turkish apple germplasm using peroxidase gene-based markers. Sci Hortic 125:368–373

    Article  CAS  Google Scholar 

  15. Pinar H, Unlu M, Ercisli S, Uzun A, Bircan M (2016) Genetic analysis of selected almond genotypes and cultivars grown in Turkey using peroxidase-gene-based markers. J For Res 27(4):747–754

    Article  CAS  Google Scholar 

  16. Ocal N, Mikail A, Osman G, Halit Y, Ilknur S, Nebahat S (2014) Genetic diversity, population structure and linkage disequilibrium among watermelons based on peroxidase gene markers. Sci Hortic 176:151–161

    Article  CAS  Google Scholar 

  17. Welinder KG, Justesen AF, Kjaersgard IVH, Jensen RB, Rasmussen SK, Jespersen HM, Duroux L (2002) Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana. Eur J Biochem 269:6063–6081

    Article  CAS  Google Scholar 

  18. Gulsen O, Shearman RC, Heng-Moss TM, Mutlu N, Lee DJ, Sarath G (2007) Peroxidase gene polymorphism in buffalograss and other grasses. Crop Sci 47:767–772

    Article  CAS  Google Scholar 

  19. Yeh FC, Yang R (1999) Popgene version 1.31 Microsoft window-based freeware or population genetic analysis

  20. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76(10):5269–5273

    Article  CAS  Google Scholar 

  22. Prichard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genet 155:945–959

    Google Scholar 

  23. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  24. Wittayawannakul W, Garcia RN, Yllano OB, Borromeo TH, Namuco LO, Tecson-Mendoza EM (2010) Assessment of genetic diversity in Garciniaspecies using peroxidase, RAPD and gene sequence specific amplification polymorphism (GSSAP). Philipp Agric Sci 93:31–41

    Google Scholar 

  25. Santalla M, Rodin˜o A, de Ron A (2002) Allozyme evidence supporting southwestern Europe as a secondary center of genetic diversity for the common bean. Theor Appl Genet 104:934–944

    Article  CAS  Google Scholar 

  26. Okii D, Tukamuhabwa P, Kami J, Namayanja A, Paparu P, Ugen M, Gepts P (2014) The genetic diversity and population structure of common bean (Phaseolus vulgaris L.) germplasm in Uganda. Afr J Biotechnol 13:2935–2949

    Article  Google Scholar 

  27. Fisseha Z, Tesfaye K, Dagne K, Blair MW, Harvey J, Kyallo M, Gepts P (2016) Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) germplasm of Ethiopia as revealed by microsatellite markers. Afr J Biotechnol 15(52):2824–2847

    Article  Google Scholar 

  28. Buah S, Buruchara R, Okori P (2017) Molecular characterisation of common bean (Phaseolus vulgaris L.) accessions from Southwestern Uganda reveal high levels of genetic diversity. Genet Resour Crop Evol 64:1–14

    Article  Google Scholar 

  29. Rebaa F, Abid G, Aouida M, Abdelkarim S, Aroua I, Muhovski Y, Baudoin J, Mahmoud M, Sassi K, Jebara M (2017) Genetic variability in Tunisian populations of faba bean (Vicia faba L. var. major) assessed by morphological and SSR markers. Physiol Mol Biol Plants 23(2):397–409

    Article  CAS  Google Scholar 

  30. Badiane FA, Gowda BS, Cissé N, Diouf D, Sadio O, Timko MP (2012) Genetic relationship of cowpea (Vigna unguiculata) varieties from Senegal based on SSR markers. Genet Mol Res 11(1):292–304

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Biochemistry, University of Nairobi (UoN), for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evans N. Nyaboga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to publish this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Significance Statement The findings of the present study demonstrate the existence of a considerable amount of genetic variability among common bean genotypes grown in Kenya. This indicates the potential application of these genotypes in future breeding programs for genetic improvement of common beans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gyang, P.J., Muge, E.K. & Nyaboga, E.N. Genetic Diversity and Population Structure of Kenyan Common Bean (Phaseolus vulgaris L.) Germplasm Using Peroxidase Gene Markers. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 90, 293–301 (2020). https://doi.org/10.1007/s40011-019-01101-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-019-01101-0

Keywords

Navigation