Skip to main content

Advertisement

Log in

Nanopesticides: Opportunities in Crop Protection and Associated Environmental Risks

  • Review
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

The last decade has witnessed significant progress in nanotechnology and its application in diverse fields. This growing interest has also been intensified in agriculture sector, which is evident from the publication of interesting scientific articles and lodging of patent applications, showing the relevance of nanotechnology in sustainable crop production. Crop losses due to plant pathogens, insects and weeds are a considerable challenge that the current agricultural production system faces worldwide. This article depicts the use of nanoparticles that paves the way for developing novel crop protection products in near future. Owing to the fact that nanoparticles have been used in many economically important applications, it is highly desirable to ascertain the possible deleterious effects as well. Moreover, intentional application of nanoparticle-based pesticides and fertilizers is an issue of great concern, as it may pose serious hazards. From this perspective, the authors discussed the recent research aimed at defining effects of nanoparticles on various environments and  human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tabashnik BE, Brevault T, Carriere Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510–521. doi:10.1038/nbt.2597

    Article  CAS  PubMed  Google Scholar 

  2. Frumkin H, Hess J, Vindigni S (2009) Energy and public health: the challenge of peak petroleum. Public Health Rep 124(1):5–19

    Article  PubMed  PubMed Central  Google Scholar 

  3. Department of Economic and Social Affairs of the United Nations Secretariat (2015) World population prospects: the 2015 revision, key findings and advance tables. http://esa.un.org/unpd/wpp/publications/files/key_findings_wpp_2015.pdf

  4. Food and Agriculture Organization (2009) Global agriculture towards 2050. http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf

  5. Pimentel D (2009) Pesticide and pest control. In: Peshin R, Dhawan AK (eds) Integrated pest management: innovation-development process, vol 1. Springer, Dordrecht, pp 83–87. doi:10.1007/978-1-4020-8992-3

    Chapter  Google Scholar 

  6. Richter ED (2002) Acute human pesticide poisonings. In: Pimentel D (ed) Encyclopedia of pest management. Dekker, New York, pp 3–6

    Google Scholar 

  7. Food and Agriculture Organization (2016) Climate change and food security: risks and responses. http://www.fao.org/3/a-i5188e.pdf

  8. Food Quality & Nutrition (2015) India’s Farmers Fighting Pests. https://croplife.org/news/keeping-indias-pests-in-line/

  9. Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate and exposure modelling. Crit Rev Environ Sci Technol 43:1823–1867. doi:10.1080/10643389.2012.671750

    Article  CAS  Google Scholar 

  10. Kookana RS, Boxall ABA, Reeves PT, Ashauer R, Beulke S, Chaudhry Q, Cornelis G, Fernandes TF, Gan J, Kah M, Lynch I, Ranville J, Sinclar C, Spurgeon D, Tiede K, Van den Brink PJ (2014) Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J Agric Food Chem 62:4227–4240. doi:10.1021/jf500232f

    Article  CAS  PubMed  Google Scholar 

  11. Perez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545. doi:10.1002/ps.1732

    Article  CAS  PubMed  Google Scholar 

  12. Gogos A, Knauer K, Bucheli T (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792. doi:10.1021/jf302154y

    Article  CAS  PubMed  Google Scholar 

  13. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster E (2012) Application of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70. doi:10.1016/j.cropro.2012.01.007

    Article  CAS  Google Scholar 

  14. Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235. doi:10.1016/j.envint.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  15. Australian Pesticides and Veterinary Medicines Authority (2015) Nanotechnologies for pesticides and veterinary medicines: regulatory considerations-final report. http://apvma.gov.au/node/15626

  16. Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation. Front Chem. doi:10.3389/fchem.2015.00064

    Article  PubMed  PubMed Central  Google Scholar 

  17. ISO/TS80004-2:2015(en) Nanotechnologies-Vocabulary-Part2: Nano-objects. https://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-2:ed-1:v1:en

  18. Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, Gordon SC (2015) Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol 73(1):137–150. doi:10.1016/j.yrtph.2015.06.001

    Article  CAS  PubMed  Google Scholar 

  19. Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302. doi:10.5423/PPJ.2006.22.3.295

    Article  Google Scholar 

  20. Ciscato C, Barbosa C, Gebara A (2015) Analysis of Pesticide Residues in Mango by GC/MS/MS With Bond Elut QuEChERS EN Kits. http://www.agilent.com/cs/library/applications/5991-6054EN.pdf

  21. Aguilar-Méndez MA, Martín-Martinez ES, Ortega-Arroyo L, Cobián-Portillo G, Sánchez-Espíndola E (2011) Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J Nanopart Res 13:2525–2532. doi:10.1007/s11051-010-0145-6

    Article  CAS  Google Scholar 

  22. Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh HB (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9(5):e97881. doi:10.1371/journal.pone.0097881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Groth DE, Bond JA (2007) Effects of cultivars and fungicides on rice sheath blight, yield, and quality. Plant Dis 91:1647–1650. doi:10.1094/PDIS-91-12-1647

    Article  CAS  PubMed  Google Scholar 

  24. Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25(4):376–380

    Article  CAS  Google Scholar 

  25. Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta Part A Mol Biomol Spectrosc 93:95–99. doi:10.1016/j.saa.2012.03.002

    Article  CAS  Google Scholar 

  26. Gopinath V, Velusamy P (2013) Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim Acta Part A Mol Biomol Spectrosc 106:170–174. doi:10.1016/j.saa.2012.12.087

    Article  CAS  Google Scholar 

  27. Jo YK, Cromwell W, Jeong HK, Thorkelson J, Roh JH, Shin DB (2015) Use of silver nanoparticles for managing Gibberella fujikuroi on rice seedlings. Crop Prot 74:65–69. doi:10.1016/j.cropro.2015.04.003

    Article  CAS  Google Scholar 

  28. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043. doi:10.1094/PDIS-93-10-1037

    Article  CAS  PubMed  Google Scholar 

  29. Howard R, Ferrari M (1989) Role of melanin in appressorium function. Exp Mycol 13(4):403–418. doi:10.1016/0147-5975(89)90036-4

    Article  CAS  Google Scholar 

  30. Kasprowicz MJ, Koziol M, Gorczyca A (2010) The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56(3):247–253. doi:10.1139/w10-012

    Article  CAS  PubMed  Google Scholar 

  31. Jung JH, Kim SW, Min JS, Kim YJ, Lamsal K, Kim SU, Lee YS (2010) The effect of nano-silver liquid against the white rot of the green onion caused by Sclerotium cepivorum. Mycobiology 38(1):39–45. doi:10.4489/MYCO.2010.38.1.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40(1):53–58. doi:10.5941/MYCO.2012.40.1.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jothirethinam A, Prathiba S, Shanthi N, Arunkumar K (2015) Green synthesized silver nanoparticles prepared from the antimicrobial crude extracts of two brown seaweeds against plant pathogens. Am J Nanotechnol 6(2):31–39. doi:10.3844/ajntsp.2015.31.39

    Article  Google Scholar 

  34. Woo KS, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Le YS (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19(8):760–764. doi:10.4014/jmb.0812.649

    Article  CAS  Google Scholar 

  35. Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7(10):8972–8980. doi:10.1021/nn4034794

    Article  CAS  PubMed  Google Scholar 

  36. Strayer A, Ocsoy I, Tan W, Jones JB, Paret ML (2016) Low concentrations of a silver-based nanocomposite to manage bacterial spot of tomato in the greenhouse. Plant Dis. doi:10.1094/PDIS-05-15-0580-RE

    Article  PubMed  Google Scholar 

  37. Paret ML, Vallad GE, Averett DR, Jones JB, Olson SM (2013) Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology 103(3):228–236. doi:10.1094/PHYTO-08-12-0183-R

    Article  CAS  PubMed  Google Scholar 

  38. Paret ML, Palmateer AJ, Knox GW (2013) Evaluation of a light-activated nanoparticle formulation of titanium dioxide with zinc for management of bacterial leaf spot on rosa ‘Noare’. HortScience 48(2):189–192

    CAS  Google Scholar 

  39. Spadaro D, Garibaldi A, Martines GF (2004) Control of Penicillium expansum and Botrytis cinerea on apple combining a biocontrol agent with hot water dipping and acibenzolar-S-methyl, baking soda, or ethanol application. Postharvest Biol Technol 33(2):141–151. doi:10.1016/j.postharvbio.2004.02.002

    Article  CAS  Google Scholar 

  40. Miccolis De, Angelini RM, Rotolo C, Masiello M, Gerin D, Pollastro S, Faretra F (2014) Occurrence of fungicide resistance in populations of Botryotinia fuckeliana (Botrytis cinerea) on table grape and strawberry in southern Italy. Pest Manag Sci 70(12):1785–1796. doi:10.1002/ps.3711

    Article  CAS  Google Scholar 

  41. He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215. doi:10.1016/j.micres.2010.03.003

    Article  CAS  PubMed  Google Scholar 

  42. Xue J, Luo Z, Li P, Ding Y, Cui Y, Wu Q (2014) A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles. Sci Rep. doi:10.1038/srep05408

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lopez-Antia A, Ortiz-Santaliestra ME, Blas EG, Camarero PR, Mougeot F, Mateo R (2015) Adverse effects of thiram-treated seed ingestion on the reproductive performance and the offspring immune function of the red-legged partridge. Environ Toxicol Chem 34(6):1320–1329. doi:10.1002/etc.2925

    Article  CAS  PubMed  Google Scholar 

  44. Timmer LW, Dewdney MM, Chung KR (2009) Florida citrus pest management guide: Melanose. In: Rogers ME, Dewdney MM, Spann TM (ed) 2009 Florida Citrus Pest Management Guide. University of Florida, IFAS, Gainesville, pp 97–98. http://polk.ifas.ufl.edu/citrus/Polk_Citrus_10-13-09/Pest_Management_files/2009%20Pest%20Management%20Guide.pdf

  45. Mondal KK, Mani C (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62(2):889–893. doi:10.1007/s13213-011-0382-7

    Article  CAS  Google Scholar 

  46. Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17. doi:10.1016/j.matlet.2013.10.011

    Article  CAS  Google Scholar 

  47. Holb IJ, de Jong PF, Heijne B (2003) Efficacy and phytotoxicity of lime sulphur in organic apple production. Ann Appl Biol 142(2):225–233. doi:10.1111/j.1744-7348.2003.tb00245.x

    Article  CAS  Google Scholar 

  48. Venzon M, Oliveira RM, Perez AL, Rodríguez-Cruz FA, Martins Filho S (2013) Lime sulfur toxicity to broad mite, to its host plants and to natural enemies. Pest Manag Sci 69(6):738–743. doi:10.1002/ps.3431

    Article  CAS  PubMed  Google Scholar 

  49. Gogoi R, Singh PK, Kumar R, Nair KK, Alam I, Srivastava C, Yadav S, Gopal M, Choudhury SR, Goswami A (2013) Suitability of nano-sulphur for biorational management of powdery mildew of Okra (Abelmoschus esculentus Moench) caused by Erysiphe cichoracearum. J Plant Pathol Microbiol 4(4):171. doi:10.4172/2157-7471.1000171

    Article  CAS  Google Scholar 

  50. Gopal M, Kumar R, Goswami A (2012) Nano-pesticides—a recent approach for pest control. J Plant Prot Sci 4(2):1–7

    Google Scholar 

  51. Hadwiger LA (2013) Multiple effects of chitosan on plant systems: solid science or hype. Plant Sci 208:42–49. doi:10.1016/j.plantsci.2013.03.007

    Article  CAS  PubMed  Google Scholar 

  52. Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683. doi:10.1016/j.ijbiomac.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  53. Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A, Raliya R, Biswas P (2015) Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 75:346–353. doi:10.1016/j.ijbiomac.2015.01.027

    Article  CAS  PubMed  Google Scholar 

  54. Chandra S, Chakraborty N, Dasgupta A, Sarkar J, Panda K, Acharya K (2015) Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci Rep. doi:10.1038/srep15195

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314(1):220–235. doi:10.1016/j.jcis.2007.04.079

    Article  CAS  Google Scholar 

  56. Du Z, Wang C, Tai X, Wang G, Liu X (2016) Optimization and characterization of biocompatible oil-in-water nanoemulsion for pesticide delivery. ACS Sustain Chem Eng 4(3):983–991. doi:10.1021/acssuschemeng.5b01058

    Article  CAS  Google Scholar 

  57. Kumar RSS, Shiny PJ, Anjali CH, Jerobin J, Goshen KM, Magdassi S, Mukherjee A, Chandrasekaran N (2013) Distinctive effects of nano-sized permethrin in the environment. Environ Sci Pollut Res 20(4):2593–2602. doi:10.1007/s11356-012-1161-0

    Article  CAS  Google Scholar 

  58. McClements DJ (2012) Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter 8(6):1719–1729. doi:10.1039/C2SM06903B

    Article  CAS  Google Scholar 

  59. Fernandes CP, de Almeida FB, Silveira AN, Gonzalez MS, Mello CB, Feder D, Apolinário R, Santos MG, Carvalho JCT, Tietbohl LAC, Rocha L, Falcão DQ (2014) Development of an insecticidal nanoemulsion with Manilkara subsericea (Sapotaceae) extract. J Nanobiotechnol 12(22):1–9. doi:10.1186/1477-3155-12-22

    Article  CAS  Google Scholar 

  60. Abouelkassem SH, Abdelrazeik AB, Rakha OM (2015) Nanoemulsion of jojoba oil, preparation, characterization and insecticidal activity against Sitophilus oryzae (Coleoptera: Curculionidae) on wheat. Int J Agric Innov Res 4(1):72–75

    Google Scholar 

  61. Pant M, Dubey S, Patanjali PK, Naik SN, Sharma S (2014) Insecticidal activity of eucalyptus oil nanoemulsion with karanja and jatropha aqueous filtrates. Int Biodeterior Biodegrad 91:119–127. doi:10.1016/j.ibiod.2013.11.019

    Article  CAS  Google Scholar 

  62. Kumar J, Shakil NA, Singh MK, Singh MK, Pandey A, Pandey RP (2010) Development of controlled release formulations of azadirachtin-A employing poly (ethylene glycol) based amphiphilic copolymers. J Environ Sci Health Part B 45:310–314. doi:10.1080/03601231003704457

    Article  CAS  Google Scholar 

  63. Shakil NA, Singh MK, Pandey A, Kumar J, Parmar VS, Singh MK, Pandey RP, Watterson AC (2010) Development of poly(ethylene glycol) based amphiphilic copolymers for controlled release delivery of carbofuran. J Macromol Sci Part A Pure Appl Chem 47(3):241–247. doi:10.1080/10601320903527038

    Article  CAS  Google Scholar 

  64. Loha KM, Shakil NA, Kumar J, Singh MK, Adak T, Jain S (2011) Release kinetics of beta-cyfluthrin from its encapsulated formulations in water. J Environ Sci Health Part B 46(3):201–206. doi:10.1080/03601234.2011.540200

    Article  CAS  Google Scholar 

  65. Adak T, Kumar J, Shakil NA, Walia S (2012) Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J Environ Sci Health Part B 47(3):217–225. doi:10.1080/03601234.2012.634365

    Article  CAS  Google Scholar 

  66. Sarkar DJ, Kumar J, Shakil NA, Walia S (2012) Release kinetics of controlled release formulations of thiamethoxam employing nano-ranged amphiphilic PEG and diacid based block polymers in soil. J Environ Sci Health Part A Toxic Hazard Subst Environ Eng 47(11):1701–1712. doi:10.1080/10934529.2012.687294

    Article  CAS  Google Scholar 

  67. Pradhan S, Roy I, Lodh G, Patra P, Choudhury SR, Samanta A, Goswami A (2013) Entomotoxicity and biosafety assessment of PEGylated acephate nanoparticles: a biologically safe alternative to neurotoxic pesticides. J Environ Sci Health B 48(7):559–569. doi:10.1080/03601234.2013.774891

    Article  CAS  PubMed  Google Scholar 

  68. Kaushik P, Shakil NA, Kumar J, Singh MK, Yadav SK (2013) Development of controlled release formulations of thiram employing amphiphilic polymers and their bioefficacy evaluation in seed quality enhancement studies. J Environ Sci Health B 48(8):677–685. doi:10.1080/03601234.2013.778614

    Article  CAS  PubMed  Google Scholar 

  69. Kang MA, Seo MJ, Hwang IC, Jang C, Park HJ, Yu YM, Youn YN (2012) Insecticidal activity and feeding behavior of the green peach aphid, Myzus persicae, after treatment with nano types of pyrifluquinazon. J Asia Pac Entomol 15(4):533–541. doi:10.1016/j.aspen.2012.05.015

    Article  CAS  Google Scholar 

  70. Hwang IC, Kim TH, Bang SH, Kim KS, Kwon HR, Seo MJ, Youn YM, Park HJ, Aoki CY, Yu YM (2011) Insecticidal effect of controlled release formulations of etofenprox based on nano-bio technique. J Fac Agric Kyushu Univ 56(1):33–40

    CAS  Google Scholar 

  71. Nguyen HM, Hwang IC, Park JW, Park HJ (2012) Photoprotection for deltamethrin using chitosan-coated beeswax solid lipid nanoparticles. Pest Manag Sci 68(7):1062–1068. doi:10.1002/ps.3268

    Article  CAS  PubMed  Google Scholar 

  72. Nguyen HM, Hwang IC, Park JW, Park HJ (2012) Enhanced payload and photo-protection for pesticides using nanostructured lipid carriers with corn oil as liquid lipid. J Microencapsul 29(6):596–604. doi:10.3109/02652048.2012.668960

    Article  CAS  PubMed  Google Scholar 

  73. de Carvalho S, Vendramim JD, de Sá ICG, da Silva MFDGF, Ribeiro LP, Forim MR (2015) Systemic insecticidal effect of neem-based nanoformulations against Bemisia tabaci (Hemiptera: Aleyrodidae) biotype B in tomato. Bragantia 74(3):298–306. doi:10.1590/1678-4499.0404

    Article  Google Scholar 

  74. Heuskin S, Verheggen FJ, Haubruge E, Wathelet JP, Lognay G (2011) The use of semiochemical slow-release devices in integrated pest management strategies. Biotechnol Agron Soc Environ 15(3):459–470

    Google Scholar 

  75. Hellmann H, Greiner A, Wendorff JH (2011) Design of pheromone releasing nanofibers for plant protection. Polym Adv Technol 22(4):407–413. doi:10.1002/pat.1532

    Article  CAS  Google Scholar 

  76. Bhagat D, Samanta SK, Bhattacharya S (2013) Efficient management of fruit pests by pheromone nanogels. Sci Rep. doi:10.1038/srep01294

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ahmad R, Hussein MZ, Kadir WRWA, Sarijo SH, Hin TYY (2015) Evaluation of controlled-release property and phytotoxicity effect of insect pheromone zinc-layered hydroxide nanohybrid intercalated with hexenoic acid. J Agric Food Chem 63(51):10893–10902. doi:10.1021/acs.jafc.5b03102

    Article  CAS  PubMed  Google Scholar 

  78. Ali MA, Rehman I, Iqbal A, Din S, Rao AQ, Latif A, Samiullah TR, Azam S, Husnain T (2014) Nanotechnology: a new frontier in Agriculture. Adv Life Sci 1(3):129–138

    Google Scholar 

  79. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713. doi:10.5897/AJBX2013.13554

    Article  CAS  Google Scholar 

  80. Maruyama CR, Guilger M, Pascoli M, Bileshy-José M, Abhilash PC, Fraceto LF, de Lima R (2016) Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci Rep. doi:10.1038/srep19768

    Article  PubMed  PubMed Central  Google Scholar 

  81. Grillo R, Pereiraa AES, Nishisaka CS, de Lima R, Oehlke K, Greiner R, Fraceto LF (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 278:163–171. doi:10.1016/j.jhazmat.2014.05.079

    Article  CAS  PubMed  Google Scholar 

  82. Grillo R, Rosa AH, Fraceto LF (2014) Poly(ε-caprolactone) nanocapsules carrying the herbicide atrazine: effect of chitosan-coating agent on physico-chemical stability and herbicide release profile. Int J Environ Sci Technol 11(6):1691–1700. doi:10.1007/s13762-013-0358-1

    Article  CAS  Google Scholar 

  83. Pereira AE, Grillo R, Mello NF, Rosa AH, Fraceto LF (2014) Application of poly (epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215. doi:10.1016/j.jhazmat.2014.01.025

    Article  CAS  PubMed  Google Scholar 

  84. Clemente Z, Grillo R, Jonsson M, Santos NZ, Feitosa LO, Lima R, Fraceto LF (2014) Ecotoxicological evaluation of poly(epsilon-caprolactone) nanocapsules containing triazine herbicides. J Nanosci Nanotechnol 14(7):4911–4917. doi:10.1166/jnn.2013.8681

    Article  CAS  PubMed  Google Scholar 

  85. Grillo R, dos Santos NZ, Maruyama CR, Rosa AH, de Lima R, Fraceto LF (2012) Poly (ε-caprolactone)nanocapsules as carrier systems for herbicides: physico-chemical characterization and genotoxicity evaluation. J Hazard Mater 231–232:1–9. doi:10.1016/j.jhazmat.2012.06.019

    Article  CAS  PubMed  Google Scholar 

  86. de Oliveira JL, Campos EV, Gonçalves da Silva CM, Pasquoto T, Lima R, Fraceto LF (2015) Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. J Agric Food Chem 63(2):422–432. doi:10.1021/jf5059045

    Article  CAS  PubMed  Google Scholar 

  87. Kah M, Machinski P, Koerner P, Tiede K, Grillo R, Fraceto LF, Hofmann T (2014) Analysing the fate of nanopesticides in soil and the applicability of regulatory protocols using a polymer-based nanoformulation of atrazine. Environ Sci Pollut Res 21(20):11699–11707. doi:10.1007/s11356-014-2523-6

    Article  CAS  Google Scholar 

  88. Subramanian KS, Manikandan A, Thirunavukkarasu M, Rahale CS (2015) Nano-fertilizers for balanced crop nutrition. In: Rai M, Ribeiro C, Mattoso L, Duran N (ed) Nanotechnologies in food and agriculture. Springer, pp 69–80. doi:10.1007/978-3-319-14024-7_3

    Google Scholar 

  89. Kottegoda N, Munaweera I, Madusanka N, Karunaratne V (2011) A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci 101(1):73–78

    CAS  Google Scholar 

  90. Derosa MC, Monreal C, Schnitzer M, Walsh RP, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91. doi:10.1038/nnano.2010.2

    Article  CAS  PubMed  Google Scholar 

  91. Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5(19):2229–2232

    Google Scholar 

  92. Pereira EI, Minussi FB, da Cruz CCT, Bernardi ACC, Ribeiro C (2012) Urea–montmorillonite-extruded nanocomposites: a novel slow-release material. J Agric Food Chem 60(21):5267–5272. doi:10.1021/jf3001229

    Article  CAS  PubMed  Google Scholar 

  93. Manikandan A, Subramanian KS (2014) Fabrication and characterisation of nanoporous zeolite based N fertilizer. Afr J Agric Res 9(2):276–284. doi:10.5897/AJAR2013.8236

    Article  CAS  Google Scholar 

  94. Manikandan A, Subramanian KS (2016) Evaluation of zeolite based nitrogen nano-fertilizers on maize growth, yield and quality on inceptisols and alfisols. Int J Plant Soil Sci 9(4):1–9. doi:10.9734/IJPSS/2016/22103

    Article  CAS  Google Scholar 

  95. Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep. doi:10.1038/srep05686

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ekinci M, Dursun A, Yildirim E, Parlakova F (2014) Effects of nanotechnology liquid fertilizers on the plant growth and yield of cucumber (Cucumis sativus L.). Acta Sci Pol Hortic 13(3):135–141

    Google Scholar 

  97. Amirnia R, Bayat M, Tajbakhsh M (2014) Effects of nano fertilizer application and maternal corm weight on flowering at some saffron (Crocus sativus L.) ecotypes. Turk J Field Crops 19(2):158–168

    Article  Google Scholar 

  98. Bakhtiari M, Moaveni P, Sani B (2015) The effect of iron nanoparticles spraying time and concentration on wheat. Biol Forum Int J 7(1):679–683

    CAS  Google Scholar 

  99. Sh Soliman A, El-feky SA, Darwish E (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hortic For 7(2):36–47. doi:10.5897/JHF2014.0379

    Article  Google Scholar 

  100. Wu MY (2013) Effects of incorporation of nano-carbon into slow-released fertilizer on rice yield and nitrogen loss in surface water of paddy soil. In: Intelligent system design and engineering applications (ISDEA), 2013 third international conference on, Hong Kong, pp–676-681. doi: 10.1109/ISDEA.2012.161

  101. Bortolin A, Aouada FA, Mattoso LHC, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61(31):7431–7439. doi:10.1021/jf401273n

    Article  CAS  PubMed  Google Scholar 

  102. Pereira EI, da Cruz CCT, Solomon A, Le A, Cavigelli MA, Ribeiro C (2015) Novel slow-release nanocomposite nitrogen fertilizers: the impact of polymers on nanocomposite properties and function. Ind Eng Chem Res 54(14):3717–3725. doi:10.1021/acs.iecr.5b00176

    Article  CAS  Google Scholar 

  103. Sempeho SI, Kim HT, Mubofu E, Pogrebnoi E, Shao G, Hilonga A (2015) Encapsulated urea-kaolinite nanocomposite for controlled release fertilizer formulations. J Chem. doi:10.1155/2015/237397

    Article  Google Scholar 

  104. Wen P, Wu Z, He Y, Han Y, Tong Y (2016) Characterization of p(AA-co-AM)/bent/urea and its swelling and slow release behavior in a simulative soil environment. J Appl Polym Sci 133(12):43082. doi:10.1002/app.43082

    Article  CAS  Google Scholar 

  105. Yamamotoa CF, Pereirab EI, Mattosob LHC, Matsunakac T, Ribeiro C (2016) Slow release fertilizers based on urea/urea–formaldehyde polymer nanocomposites. Chem Eng J 287:390–397. doi:10.1016/j.cej.2015.11.023

    Article  CAS  Google Scholar 

  106. Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692. doi:10.1007/s11051-013-1692-4

    Article  Google Scholar 

  107. Sillen WMA, Thijs S, Abbamondi GR, Janssen J, Weyens N, White JC, Vangronsveld J (2015) Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biol Biochem 91:14–22. doi:10.1016/j.soilbio.2015.08.019

    Article  CAS  Google Scholar 

  108. Sweet MJ, Singleton I (2015) Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots. J Nanopart Res 17:448. doi:10.1007/s11051-015-3246-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Calder AJ, Dimkpa CO, McLean JE, Britt DW, Johnson W, Anderson AJ (2012) Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6. Sci Total Environ 429:215–222. doi:10.1016/j.scitotenv.2012.04.049

    Article  CAS  PubMed  Google Scholar 

  110. Kumar N, Shah V, Walker VK (2011) Perturbation of an arctic soil microbial community by metal nanoparticles. J Hazard Mater 190(1–3):816–822. doi:10.1016/j.jhazmat.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  111. Kumar N, Shah V, Walker VK (2012) Influence of a nanoparticle mixture on an arctic soil community. Environ Toxicol Chem 31(1):131–135. doi:10.1002/etc.721

    Article  CAS  PubMed  Google Scholar 

  112. Coutris C, Joner EJ, Oughton DH (2012) Aging and soil organic matter content affect the fate of silver nanoparticles in soil. Sci Total Environ 420:327–333. doi:10.1016/j.scitotenv.2012.01.027

    Article  CAS  PubMed  Google Scholar 

  113. Pal S, Tak YK, Song J (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720. doi:10.1128/AEM.02218-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1):283–287. doi:10.1021/es1034188

    Article  CAS  PubMed  Google Scholar 

  115. Costanza J, El Badawy AM, Tolaymat TM (2011) Comment on “120 years of nanosilver history: implications for policy makers”. Environ Sci Technol 45(17):7591–7592. doi:10.1021/es200666n

    Article  CAS  PubMed  Google Scholar 

  116. Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78(18):6749–6758. doi:10.1128/AEM.00941-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shen Z, Chen Z, Hou Z, Li T, Lu X (2015) Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Front Environ Sci Eng 9(5):912–918. doi:10.1007/s11783-015-0789-7

    Article  CAS  Google Scholar 

  118. Gajjar P, Pettee B, Britt DW, Huang W, JohnsonWP Anderson AJ (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 3(9):1–13. doi:10.1186/1754-1611-3-9

    Article  CAS  Google Scholar 

  119. Kumar R, Gopal M, Pabbi S, Paul S, Imteyaz A, Yadav S, Nair KK, Chauhan N, Srivastava C, Gogoi R, Singh PK, Goswami A (2016) Effect of nanohexaconazole on nitrogen fixing blue green algae and bacteria. J Nanosci Nanotechnol 16(1):643–647. doi:10.1166/jnn.2016.10901

    Article  CAS  PubMed  Google Scholar 

  120. Kumar R, Nair KK, Imteyaz A, Gogoi R, Singh PK, Srivastava C, Gopal M, Goswami A (2015) Development and quality control of nanohexaconazole as an effective fungicide and its biosafety studies on soil nitifiers. J Nanosci Nanotechnol 15(2):1350–1356. doi:10.1166/jnn.2015.9088

    Article  CAS  PubMed  Google Scholar 

  121. Shin YJ, Kwak J, An YJ (2012) Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere 88(4):524–529. doi:10.1016/j.chemosphere.2012.03.010

    Article  CAS  PubMed  Google Scholar 

  122. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37(2):517–531. doi:10.1016/j.envint.2010.10.012

    Article  CAS  PubMed  Google Scholar 

  123. Heckmann LH, Hovgaard MB, Sutherland DS, Autrup H, Besenbacher F, Scott-Fordsmand JJ (2011) Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology 20(1):226–233. doi:10.1007/s10646-010-0574-0

    Article  CAS  PubMed  Google Scholar 

  124. Shoults-Wilson WA, Zhurbich OI, McNear DH, Tsyusko OV, Bertsch PM, Unrine JM (2011) Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida). Ecotoxicology 20(2):385–396. doi:10.1007/s10646-010-0590-0

    Article  CAS  PubMed  Google Scholar 

  125. Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2011) Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology 5(3):432–444. doi:10.3109/17435390.2010.537382

    Article  CAS  PubMed  Google Scholar 

  126. Diez-Ortiz M, Lahive E, George S, Ter Schure A, Van Gestel CA, Jurkschat K, Svendsen C, Spurgeon DJ (2015) Short-term soil bioassays may not reveal the full toxicity potential for nanomaterials; bioavailability and toxicity of silver ions (AgNO3) and silver nanoparticles to earthworm Eisenia fetida in long-term aged soils. Environ Pollut 203:191–198. doi:10.1016/j.envpol.2015.03.033

    Article  CAS  PubMed  Google Scholar 

  127. Unrine JM, Hunyadi SE, Tsyusko OV, Rao W, Shoults-Wilson WA, Bertsch PM (2010) Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida). Environ Sci Technol 44(21):8308–8313. doi:10.1021/es101885w

    Article  CAS  PubMed  Google Scholar 

  128. Unrine JM, Shoults-Wilson WA, Zhurbich O, Bertsch PM, Tsyusko OV (2012) Trophic transfer of Au nanoparticles from soil along a simulated terrestrial food chain. Environ Sci Technol 46(17):9753–9760. doi:10.1021/es3025325

    Article  CAS  PubMed  Google Scholar 

  129. Unrine JM, Tsyusko OV, Hunyadi SE, Judy JD, Bertsch PM (2010) Effects of particle size on chemical speciation and bioavailability of copper to earthworms (Eisenia fetida) exposed to copper nanoparticles. J Environ Qual 39(6):1942–1953. doi:10.2134/jeq2009.0387

    Article  CAS  PubMed  Google Scholar 

  130. McShane H, Sarrazin M, Whalen JK, Hendershot WH, Sunahara GI (2012) Reproductive and behavioral responses of earthworms exposed to nano-sized titanium dioxide in soil. Environ Toxicol Chem 31(1):184–193. doi:10.1002/etc.714

    Article  CAS  PubMed  Google Scholar 

  131. Cañas JE, Qi B, Li S, Maul JD, Cox SB, Das S, Green MJ (2011) Acute and reproductive toxicity of nano-sized metal oxides (ZnO and TiO2) to earthworms (Eisenia fetida). J Environ Monit 13(12):3351–3357. doi:10.1039/c1em10497g

    Article  CAS  PubMed  Google Scholar 

  132. Whitfield Åslund ML, McShane H, Simpson MJ, Simpson AJ, Whalen JK, Hendershot WH, Sunahara GI (2012) Earthworm sublethal responses to titanium dioxide nanomaterial in soil detected by 1H NMR metabolomics. Environ Sci Technol 46(2):1111–1118. doi:10.1021/es202327k

    Article  CAS  PubMed  Google Scholar 

  133. Li L-Z, Zhou DM, Peijnenburg WJ, Van Gestel CA, Jin SY, Wang YJ, Wang P (2011) Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn. Environ Int 37(6):1098–1104. doi:10.1016/j.envint.2011.01.008

    Article  CAS  PubMed  Google Scholar 

  134. Hooper HL, Jurkschat K, Morgan AJ, Bailey J, Lawlor AJ, Spurgeon DJ, Svendsen C (2011) Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix. Environ Int 37(6):1111–1117. doi:10.1016/j.envint.2011.02.019

    Article  CAS  PubMed  Google Scholar 

  135. Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J, Ju Lee E (2013) Functional analyses of nanoparticle toxicity: A comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67. doi:10.1016/j.ecoenv.2013.03.033

    Article  CAS  PubMed  Google Scholar 

  136. Thuesombata P, Hannongbuab S, Akasitb S, Chadchawanc S (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 104:302–309. doi:10.1016/j.ecoenv.2014.03.022

    Article  CAS  Google Scholar 

  137. Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54. doi:10.1016/j.ecoenv.2012.10.018

    Article  CAS  PubMed  Google Scholar 

  138. Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584. doi:10.1111/j.1365-3040.2009.01952.x

    Article  CAS  PubMed  Google Scholar 

  139. Burke DJ, Zhu S, Pablico-Lansigan MP, Hewins CR, Samia ACS (2014) Titanium oxide nanoparticle effects on composition of soil microbial communities and plant performance. Biol Fertil Soils 50(7):1169–1173. doi:10.1007/s00374-014-0938-3

    Article  CAS  Google Scholar 

  140. Moll J, Gogos A, Bucheli TD, Widmer F, Van-der Heijden MGA (2016) Effect of nanoparticles on red clover and its symbiotic microorganisms. J Nanobiotechnol 14(36):1–8. doi:10.1186/s12951-016-0188-7

    Article  CAS  Google Scholar 

  141. Khodakovskaya MV, Kim B-S, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9(1):115–123. doi:10.1002/smll.201201225(COMPLETE)

    Article  CAS  PubMed  Google Scholar 

  142. Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao L, Gardea-Torresdey JL (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6:132–138. doi:10.1039/C3MT00064H

    Article  CAS  PubMed  Google Scholar 

  143. Yang Z, Chen J, Dou R, Gao X, Mao C, Wang L (2015) Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.). Int J Environ Res Public Health 12(12):15100–15109. doi:10.3390/ijerph121214963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Prakash M, Nair G, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302–313. doi:10.1016/j.ecoenv.2014.12.013

    Article  CAS  Google Scholar 

  145. Caniveta L, Dubotc P, Garçonb G, Denayera FO (2015) Effects of engineered iron nanoparticles on the bryophyte, Physcomitrella patens (Hedw.) Bruch & Schimp, after foliar exposure. Ecotoxicol Environ Saf 113:499–505. doi:10.1016/j.ecoenv.2014.12.035

    Article  CAS  Google Scholar 

  146. Libralato G, Devoti AC, Zanella M, Sabbioni E, Mičetić I, Manodor L, Pigozzo A, Manenti S, Groppi F, Ghirardini AV (2016) Phytotoxicity of ionic, micro- and nano-sized iron in three plant species. Ecotoxicol Environ Saf 123:81–88. doi:10.1016/j.ecoenv.2015.07.024

    Article  CAS  PubMed  Google Scholar 

  147. Wang J, Fang Z, Cheng W, Tsang EP, Zhao D (2016) Ageing decreases the phytotoxicity of zero-valent iron nanoparticles in soil cultivated with Oryza sativa. Ecotoxicology. doi:10.1007/s10646-016-1674-2

    Article  PubMed  Google Scholar 

  148. Andreotti F, Mucha AP, Caetano C, Rodrigues P, Gomes CR, Almeida CMR (2015) Interactions between salt marsh plants and Cu nanoparticles—effects on metal uptake and phytoremediation processes. Ecotoxicol Environ Saf 120:303–309. doi:10.1016/j.ecoenv.2015.06.017

    Article  CAS  PubMed  Google Scholar 

  149. Li L, Sillanpa M, Tuominen M, Lounatmaa K, Schultz E (2013) Behavior of titanium dioxide nanoparticles in Lemna minor growth test conditions. Ecotoxicol Environ Saf 88:89–94. doi:10.1016/j.ecoenv.2012.10.024

    Article  CAS  PubMed  Google Scholar 

  150. Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal E, Boczkowski J, Lacroix G, Hoet P (2009) Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6(14):1–12. doi:10.1186/1743-8977-6-14

    Article  CAS  Google Scholar 

  151. Sambale F, Wagner S, Stahl F, Khaydarov RR, Scheper T, Bahnemann D (2015) Investigations of the toxic effect of silver nanoparticles on mammalian cell lines. J Nanomater. doi:10.1155/2015/136765

    Article  Google Scholar 

  152. Avalos A, Haza AI, Morales P (2015) Manufactured silver nanoparticles of different sizes induced DNA strand breaks and oxidative DNA damage in hepatoma and leukaemia cells and in dermal and pulmonary fibroblasts. Folia Biol (Praha) 61(1):33–42

    CAS  Google Scholar 

  153. Avalos A, Haza AI, Mateo D, Morales P (2016) Interactions of manufactured silver nanoparticles of different sizes with normal human dermal fibroblasts. Int Wound J 13(1):101–109. doi:10.1111/iwj.12244

    Article  PubMed  Google Scholar 

  154. Avalos A, Haza AI, Mateo D, Morales P (2015) Effects of silver and gold nanoparticles of different sizes in human pulmonary fibroblasts. Toxicol Mech Methods 25(4):287–295. doi:10.3109/15376516.2015.1025347

    Article  CAS  PubMed  Google Scholar 

  155. Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF, Yan B, Jiang GB (2010) Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4(3):319–330. doi:10.3109/17435390.2010.483745

    Article  CAS  PubMed  Google Scholar 

  156. Sahu SC, Zheng J, Graham L, Chen L, Ihrie J, Yourick JJ, Sprando RL (2014) Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture. J Appl Toxicol 34(11):1155–1166. doi:10.1002/jat.2994

    Article  CAS  PubMed  Google Scholar 

  157. Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H (2012) Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicol Lett 208(3):286–292. doi:10.1016/j.toxlet.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  158. Foldbjerg R, Irving ES, Hayashi Y, Sutherland DS, Thorsen K, Autrup H, Beer C (2012) Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol Sci 130(1):145–157. doi:10.1093/toxsci/kfs225

    Article  CAS  PubMed  Google Scholar 

  159. Cronholm P, Karlsson HL, Hedberg J, Lowe TA, Winnberg L, Elihn K, Wallinder IO, Moller L (2013) Intracellular uptake and toxicity of Ag and CuO nanoparticles: a comparison between nanoparticles and their corresponding metal ions. Small 9(7):970–982. doi:10.1002/smll.201201069

    Article  CAS  PubMed  Google Scholar 

  160. Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11(11):1–17. doi:10.1186/1743-8977-11-11

    Article  CAS  Google Scholar 

  161. Kim TH, Kim M, Park HS, Shin US, Gong MS, Kim HW (2012) Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res Part A 100(4):1033–1043. doi:10.1002/jbm.a.34053

    Article  CAS  Google Scholar 

  162. Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45(4):1177–1183. doi:10.1021/es103316q

    Article  CAS  PubMed  Google Scholar 

  163. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780. doi:10.3762/bjnano.6.181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Schilling K, Bradford B, Castelli D, Dufour E, Nash JF, Pape W, Schulte S, Tooley I, van den Bosch J, Schellauf F (2010) Human safety review of “nano” titanium dioxide and zinc oxide. Photochem Photobiol Sci 9(4):495–509. doi:10.1039/b9pp00180h

    Article  CAS  PubMed  Google Scholar 

  165. IARC (2010) IARC monographs on the evaluation of carcinogenic risks to humans: carbon black, titanium dioxide, and talc. http://monographs.iarc.fr/ENG/Monographs/vol93/mono93.pdf

  166. Coccini T, Grandi S, Lonati D, Locatelli C, De Simone U (2015) Comparative cellular toxicity of titanium dioxide nanoparticles on human astrocyte and neuronal cells after acute and prolonged exposure. Neurotoxicology 48:77–89. doi:10.1016/j.neuro.2015.03.006

    Article  CAS  PubMed  Google Scholar 

  167. Huerta-García E, Márquez-Ramírez SG, Ramos-Godinez MP, López-Saavedra A, Herrera LA, Parra A, Alfaro-Moreno E, Gomez EO, López-Marure R (2015) Internalization of titanium dioxide nanoparticles by glial cells is given at short times and is mainly mediated by actin reorganization-dependent endocytosis. Neurotoxicology 51:27–37. doi:10.1016/j.neuro.2015.08.013

    Article  CAS  PubMed  Google Scholar 

  168. Chen T, Yan J, Li Y (2014) Genotoxicity of titanium dioxide nanoparticles. J Food Drug Anal 22(1):95–104. doi:10.1016/j.jfda.2014.01.008

    Article  CAS  PubMed  Google Scholar 

  169. Toyooka T, Amano T, Ibuki Y (2012) Titanium dioxide particles phosphorylate histone H2AX independent of ROS production. Mutat Res Genet Toxicol Environ Mutagen 742(1–2):84–91. doi:10.1016/j.mrgentox.2011.12.015

    Article  CAS  Google Scholar 

  170. Demir E, Akça H, Turna F, Aksakal S, Burgucu D, Kaya B, Tokgün O, Vales G, Creus A, Marcos R (2015) Genotoxic and cell-transforming effects of titanium dioxide nanoparticles. Environ Res 136:300–308. doi:10.1016/j.envres.2014.10.032

    Article  CAS  PubMed  Google Scholar 

  171. Jones K, Mortona J, Smith I, Jurkschat K, Harding A-H, Evans G (2015) Human in vivo and in vitro studies on gastrointestinal absorption of titanium dioxide nanoparticles. Toxicol Lett 233(2):95–101. doi:10.1016/j.toxlet.2014.12.005

    Article  CAS  PubMed  Google Scholar 

  172. Song B, Liu J, Feng X, Wei L, Shao L (2015) A review on potential neurotoxicity of titanium dioxide nanoparticles. Nanoscale Res Lett 10(342):1–17. doi:10.1186/s11671-015-1042-9

    Article  CAS  Google Scholar 

  173. Kang T, Guan R, Chen X, Song Y, Jiang H, Zhao J (2013) In vitro toxicity of different-sized ZnO nanoparticles in Caco-2 cells. Nanoscale Res Lett 8(496):1–8. doi:10.1186/1556-276X-8-496

    Article  CAS  Google Scholar 

  174. Sahu D, Kannan GM, Vijayaraghavan R, Anand T, Khanum F (2013) Nanosized zinc oxide induces toxicity in human lung cells. ISRN Toxicol. doi:10.1155/2013/316075-&gt

    Article  PubMed  PubMed Central  Google Scholar 

  175. Wang C, Hu X, Gao Y, Ji Y (2015) ZnO nanoparticles treatment induces apoptosis by increasing intracellular ROS levels in LTEP-a-2 cells. Biomed Res Int. doi:10.1155/2015/423287

    Article  PubMed  PubMed Central  Google Scholar 

  176. Kar S, Gajewiczb A, Puzynb T, Roy K, Leszczynskic J (2014) Periodic table-based descriptors to encode cytotoxicity profile of metal oxide nanoparticles: a mechanistic QSTR approach. Ecotoxicol Environ Saf 107:162–169. doi:10.1016/j.ecoenv.2014.05.026

    Article  CAS  PubMed  Google Scholar 

  177. Kar S, Gajewiczb A, Roy K, Leszczynskic J, Puzyn T (2016) Extrapolating between toxicity endpoints of metal oxide nanoparticles: predicting toxicity to Escherichia coli and human keratinocyte cell line (HaCaT) with Nano-QTTR. Ecotoxicol Environ Saf 126:238–244. doi:10.1016/j.ecoenv.2015.12.033

    Article  CAS  PubMed  Google Scholar 

  178. Guo H, Xing B, Hamlet LC, Chica A, He L (2016) Surface-enhanced Raman scattering detection of silver nanoparticles in environmental and biological samples. Sci Total Environ. doi:10.1016/j.scitotenv.2016.02.084

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The first and the last authors acknowledge the support of the training programmes, “Specialized Training Programme on Nanotechnology” and “Specialized Training Programme on Nanotechnology: Production, Estimation and Characterization of Nanoparticles”, organized by Institute of Wood Science and Technology, Bengaluru, India, during 2012 and 2013. They wish to acknowledge https://mindthegraph.com/ for giving permission to use their icons in the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailesh Pandey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S., Giri, K., Kumar, R. et al. Nanopesticides: Opportunities in Crop Protection and Associated Environmental Risks. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 88, 1287–1308 (2018). https://doi.org/10.1007/s40011-016-0791-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-016-0791-2

Keywords

Navigation