Skip to main content
Log in

Factors Influencing Morphological Characteristics of Keratella cochlearis in Lake Tingtang

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Rotifers were collected fortnightly between February 2009 and January 2010 at two sampling sites in subtropical, eutrophic lake Tingtang, China. The spatio-temporal variations in the morphological characteristics of Keratella cochlearis were documented, and the relationships between each of the morphometric parameters and ecological factors were evaluated. Unspined K. cochlearis occurred more frequently than spined one in the slightly eutrophic lake. The period during which unspined and spined K. cochlearis were present differed at both sampling sites. In those months when K. cochlearis appeared at both sampling sites, the differences in morphometric parameters between the two sampling sites differed with the sampling time and the rotifer morphotype. Density of cladocerans was the primary factor influencing the body length of spined K. cochlearis. Water temperature was responsible to influence the antero-median and antero-lateral spine lengths and the posterior spine length of spined K. cochlearis and all the morphometric parameters of unspined K. cochlearis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Black RW, Slobodkin LB (1987) What is cyclomorphosis? Freshw Biol 18:373–378

    Article  Google Scholar 

  2. Pejler B (1980) Variation in the genus Keratella. Hydrobiologia 73:207–213

    Article  Google Scholar 

  3. Eloranta P (1982) Notes on the morphological variation of the rotifer species Keratella cochlearis (Gosse) s. l. in one eutrophic pond. J Plankton Res 4:299–312

    Article  Google Scholar 

  4. Hillbricht-Ilkowska A (1983) Morphological variation of Keratella cochlearis (Gosse) in Lake Biwa, Japan. Hydrobiologia 104:297–305

    Article  Google Scholar 

  5. Stemberger RS, Gilbert JJ (1984) Spine development in the rotifer Keratella cochlearis: induction by cyclopoid copepods and Asplanchna. Freshw Biol 14:639–648

    Article  Google Scholar 

  6. Bielañska-Grajner I (1995) Influence of temperature on morphological variation in populations of Keratella cochlearis (Gosse) in Rybnik Reservoir. Hydrobiologia 313(314):139–146

    Article  Google Scholar 

  7. Xi YL, Wang J, Xie P, Huang XF (2002) Morphological variation of Keratella cochlearis (Rotatoria) in a shallow, eutrophic subtropic Chinese lake. J Freshw Ecol 17:447–454

    Article  Google Scholar 

  8. Green J (2005) Morphological variation of Keratella cochlearis (Gosse) in a backwater of the River Thames. Hydrobiologia 546:189–196

    Article  Google Scholar 

  9. Garza-Mouriño G, Silva-Briano M, Nandini S, Sarma SSS, Castellanos-Páez ME (2005) Morphological and morphometrical variations of selected rotifer species in response to predation: a seasonal study of selected Brachionid species from Lake Xochimilco (Mexico). Hydrobiologia 1:169–179

    Google Scholar 

  10. Green J (2007) Morphological variation of Keratella cochlearis (Gosse) in Myanmar (Burma) in relation to zooplankton community structure. Hydrobiologia 593:5–12

    Article  Google Scholar 

  11. Gilbert JJ, Stemberger RS (1984) Asplanchna-induced polymorphism in the rotifer Keratella slacki. Limnol Oceanogr 29:1309–1316

    Article  Google Scholar 

  12. Stemberger RS, Gilbert JJ (1987) Multiple-species induction of morphological defenses in the rotifer Keratella testudo. Ecology 168:370–378

    Article  Google Scholar 

  13. Stemberger RS, Gilbert JJ (1987) Defenses of planktonic rotifers against predators. In: Kerfoot WC, Sih A (eds) Predation: direct and indirect impacts on aquatic communities. University Press of New England, Hannover, pp 227–239

    Google Scholar 

  14. Gilbert JJ (2009) Predator-specific inducible defenses in the rotifer Keratella tropica. Freshw Biol 54:1933–1946

    Article  Google Scholar 

  15. Gilbert JJ (2001) Spine development in Brachionus quadridentatus from an Australian billabong: genetic variation and induction by Asplanchna. Hydrobiologia 446(447):19–28

    Article  Google Scholar 

  16. Pavón-Meza EL, Sarma SSS, Nandini S (2007) Combined effects of temperature, food (Chlorella vulgaris) concentration and predation (Asplanchna girodi) on the morphology of Brachionus havanaensis (Rotifera). Hydrobiologia 593:95–101

    Article  Google Scholar 

  17. Ge YL, Xi YL, Ma J, Xu DD (2012) Spatio-temporal variation of morphometric characteristics of Brachionus forficula in relation to ecological factors. Acta Ecol Sin 36:5034–5042

    Google Scholar 

  18. Krätzschmar H (1913) Neue Untersuchungen tiber den Polymorphismus von Anuraea aculeata Ehrbg. Internationale Revue der gesamten Hydrobiologie und Hydrographie 6:44–49

    Article  Google Scholar 

  19. Nipkow F (1961) Die Rädertiere im Plankton des Zürichsees und ihre Entwicklungsphasen. Schweiz Z Hydrol 23:398–461

    Google Scholar 

  20. Yin XW, Niu CJ (2007) Polymorphism and morphotype transformations in the rotifer Brachionus calyciflorus. Zool Res 28:68–72

    Google Scholar 

  21. Schröder T, Gilbert JJ (2009) Maternal age and spine development in the rotifer Brachionus calyciflorus: increase of spine length with birth orders. Freshw Biol 54:1054–1065

    Article  Google Scholar 

  22. Qian FP, Xi YL, Wen XL, Huang L (2007) The influence of eutrophicaton on community structure and species diversity of rotifers in five lakes. Biodiv Sci 15:344–355

    Article  CAS  Google Scholar 

  23. Wen XL, Xi YL (2007) Population dynamics and life history strategy of the common Brachionus species (Rotifera) in Lake Jinghu. Acta Ecol Sin 27:3956–3963

    CAS  Google Scholar 

  24. Koste W (1978) Rotatoria. Die Rädertiere Mitteleuropas, vol 2. Gebrüder Borntraeger, Zehlendorf, pp 234–673

    Google Scholar 

  25. Zhang ZS, Huang XF (1991) A manual for freshwater plankton research. Science Press, Beijing, pp 340–344

    Google Scholar 

  26. Huang XF (1999) Survey, observation and analysis of lake ecology. Chinese standard press, Bejing, pp 77–79

    Google Scholar 

  27. Diéguez M, Modenutti B, Queimaliños C (1998) Influence of abiotic and biotic factors on morphological variation of Keratella cochlearis (Gosse) in a small Andean lake. Hydrobiologia 387(388):289–294

    Article  Google Scholar 

  28. Lindström K, Pejler B (1975) Experimental studies on the seasonal variation of the rotifer Keratella cochlearis (Gosse). Hydrobiologia 46:191–197

    Article  Google Scholar 

  29. Ruttner-Kolisko A (1974) A plankton rotifers. Biol Taxon Binnengewasser 26:146

    Google Scholar 

  30. Auer B, Elzer U, Arndt H (2004) Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. J Plankton Res 26:697–709

    Article  Google Scholar 

  31. Gilbert JJ (2012) Predator-induced defense in rotifers: developmental lags for morph transformations, and effect on population growth. Aquat Ecol 46:475–486

    Article  Google Scholar 

  32. Siefert RE (1972) First food of larval yellowperch, white sucker, bluegill, emerald shiner, and ainbow smelt. Trans Am Fish Soc 101:219–225

    Article  Google Scholar 

  33. Guma’a SA (1978) The food and feeding habits of young perch, Perca fluviatilis in Windermere. Freshw Biol 8:177–187

    Article  Google Scholar 

  34. Kudrinskaya OI (1979) The extent of food availability for larvae of different fish species depending on the development of the food supply. J Ichthyol 18:243–250

    Google Scholar 

  35. O’Brien WJ (1979) The predator-prey interaction of planktivorous fish and zooplankton. Am Sci 67:572–581

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous reviewers for much help in improving this manuscript. This research was funded by Natural Science Foundation of China (31400352, 30870369), Natural Science Foundation of Anhui Province of China (1408085MC66), Key Foundation for Excellent Youth in Higher Education of Anhui Province of China (2013SQRL013ZD), Foundation of the Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Foundation of the Provincial Key Laboratory of Conservation and Utilization for Important Biological Resources in Anhui, and Starting Foundation of Anhui Normal University for Doctors. All experiments reported here comply with current laws in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilong Xi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Xi, Y., Ma, J. et al. Factors Influencing Morphological Characteristics of Keratella cochlearis in Lake Tingtang. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 88, 421–428 (2018). https://doi.org/10.1007/s40011-016-0768-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-016-0768-1

Keywords

Navigation