Skip to main content
Log in

Abstract

Biosynthesis of gold nanoparticles (AuNPs) from Pseudomonas aeruginosa and Rhodopseudomonas capsulata bacteria is considered to be a novel, effective and eco-friendly method. The important parameter, which controls the size and shape of AuNPs, was pH value. The R. capsulata biomass and aqueous HAuCl4 solution were incubated at pH values ranging from 7 to 4. The AuNPs were characterized by UV–Vis whose absorbance measured at 540 nm followed by transmission electron microscopy showed the formation of AuNPs in the range of 20–80 nm in diameter at pH 6.5. Scanning electron microscopy revealed the AuNPs ranging from 50 to 70 nm, Fourier transform infrared spectroscopy confirmed the formation of AuNPs in the range of 4,000–400 cm−1. The results demonstrated that spherical AuNPs in the range of 10–20 nm were observed at pH value of 7 whereas a number of nanoplates were observed at pH 4. Hence, the present study enlightens on the green chemistry approach on the production of AuNPs using microorganisms. In comparison to chemical synthesis, the synthesis of AuNPs by microbial source is the most reliable method of production and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shong CW, Haur SC, Andrew T, Wee S (2010) Science at the nanoscale: an introductory textbook. Pan Stanford Publishing, pp 7–22

  2. Kulkarni SK (2009) Nanotechnology: principles & practices. Capital Publishing Company, New Delhi

    Google Scholar 

  3. Reddi GS, Rao CRM (2000) Platinum group metals (PGM); occurrence, use and recent trends in their determination. Trends Anal Chem 19(9):565–586

    Article  Google Scholar 

  4. Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Konishi Y, Tsukiyama T, Ohno K, Saitoh N, Nomura T, Nagamine S (2006) Intracellular recovery of gold by microbial reduction of AuCl4 ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81:24–29

    Article  CAS  Google Scholar 

  6. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 5:461

    Article  Google Scholar 

  7. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R, Angew R (2001) Bioreduction of AuCl4 ions by the fungus, verticillium sp. and surface trapping of the gold nanoparticles formed. Chem Int Ed 40:3585

    Article  CAS  Google Scholar 

  8. Joerger R, Klaus T, Granqvist CG (2000) Biologically produced silver–carbon composite materials for optically functional thin-film coatings. Adv Mater 12:407

    Article  CAS  Google Scholar 

  9. Klaus-Joerger T, JoergerR Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20

    Article  PubMed  CAS  Google Scholar 

  10. Fortin D, Beveridge TJ (2000) Biomineralization. In: Baeuerien E (ed) From biology to biotechnology and medical applications. Wiley–VCH, Weinheim

    Google Scholar 

  11. Xu W, Mulhern PJ, Blackford BL, Jericho MH, Firtel M, Beveridge TJ (1996) Modeling and measuring the elastic properties of an archaeal surface, the sheath of Methanospirillum hungatei, and the implication of methane production. J Bacteriol 178(11):3106–3112

    PubMed Central  PubMed  CAS  Google Scholar 

  12. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822

    Article  CAS  Google Scholar 

  13. Cruickshan R, Duguid JP, Marmion BP, Swain RHA (1975) Medical microbiology: the practice of medical microbiology, 12th edn., vol II. Churchill Livingstone, New York, pp 170–189

    Google Scholar 

  14. Buchanan RE, Gibbons NE (eds) (1984) Bergey’s manual of systemic bacteriology, 9th edn. Williams and Wilkins Co., Baltimore, pp 141–199

    Google Scholar 

  15. Badr Y, Mahmoud MA (2006) Size-dependent spectroscopic, optical, and electrical properties of PbSe nanoparticles. Cryst Res Technol 41:658

    Article  CAS  Google Scholar 

  16. Badr Y, Abd El-Wahed MG, Mahmoud MA (2008) Photocatalytic degradation of methyl red dye by silica nanoparticles. J Hazard Mater 154:245–253

    Article  PubMed  CAS  Google Scholar 

  17. Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Int Rev Phys Chem 54:331

    Article  CAS  Google Scholar 

  18. Edelstein AS, Cammarata RC (eds) (1996) Nanomaterials: synthesis, properties and applications. IOP Publication, Bristol and Philadelphia

  19. Ahmad A, Senapati S, khan MI, Kumar R, Ramani R, Srinivas V, Sastri M (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species IOP science. Nanotechnology 14:824

    Article  CAS  Google Scholar 

  20. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550

    Article  CAS  Google Scholar 

  21. Mukherjee P, Ahmad A, Mandal M, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV (2001) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed D.M. and S.S. thank the Council of Scientific and Industrial Research (CSIR), Government of India, for financial assistance. Angew Chem Int Ed 40:3585

    Article  CAS  Google Scholar 

  22. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3:461

    Article  PubMed  CAS  Google Scholar 

  23. Armendariz V, Herrwra I, Videa JRP, Yacaman MJ (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 6:377

    Article  CAS  Google Scholar 

  24. Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small 1:517

    Article  PubMed  CAS  Google Scholar 

  25. Sharma SD, Anand M (2012) Status of nano science and technology in India. Proc Natl Acad Sci India Sect B Biol Sci 82(S1):99–126

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support given to this research from the National Natural Science Foundation of China (Nos. 60371027, 60171005 and 90406023).We are also grateful to Mr. Aiqun Xu and Xun Xiao from the Analysis and Testing Centre of Southeast University for their kind help with the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, P.K., Kundu, S. Biosynthesis of Gold Nanoparticles Using Bacteria. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 84, 331–336 (2014). https://doi.org/10.1007/s40011-013-0230-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-013-0230-6

Keywords

Navigation