Skip to main content
Log in

Organization and Classification of Cytochrome P450 Genes in Castor (Ricinus communis L.)

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Castor is an important non-edible oilseed crop with several industrial applications. Cytochrome P450s represent ~1 % of plant proteome and constitutes one of the largest family of enzymes controlling primary and secondary metabolism. Analysis of castor genomic resources identified 210 putative Cytochrome P450 genes. Based on sequence similarity with Arabidopsis orthologs and CYP nomenclature these genes have been classified into 45 families representing 77 subfamilies and grouped into ten clans. Genes pertaining to ten CYP families (CYP80, CYP92, CYP702, CYP705, CYP708, CYP728, CYP729, CYP733, CYP736 and CYP749) are not present in the castor genome. Maximum number (92) of CYP450 genes possessed single intron followed by intron less genes(35),two intron containing genes (25) and four intron containing genes (20). Deduced CYP proteins of castor on an average exhibited 485 amino acid residues. In general, among the subfamily members conserved sequences as well as length of exons and phasing of introns have been observed. However, variable intron length(s) recorded was attributed to continuous genome expansion. Distinctive phylogenetic groups of castor CYPs showed varying levels of conserved gene organization. A novel gene RcCYPN could be identified in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Weiss EA (2000) Castor—oil seed crops. Oxford, Blackwell Science, London, pp 13–52

    Google Scholar 

  2. Singh D (1976) Castor - Ricinus communis (Euphorbiaceace). In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 84–86

    Google Scholar 

  3. Sujatha M, Reddy TP, Mahasi MJ (2008) Role of biotechnological interventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L. Biotechnol Adv 26:424–435

    Article  CAS  PubMed  Google Scholar 

  4. Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Biores Technol 97:1086–1091

    Article  CAS  Google Scholar 

  5. Scarpa A, Guerci A (1982) Various uses of the castor oil plant (Ricinus communis L.) a review. J Ethnopharmacol 5:117–137

    Article  CAS  PubMed  Google Scholar 

  6. Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones KM, Redman J, Chen G, Cahoon EB, Gedil M, Stanke M, Haas BJ, Wortman JR, Fraser-Liggett CM, Ravel J, Rabinowicz PD (2011) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28:951–956

    Article  Google Scholar 

  7. Anzenbacher P, Anzenbacherová E (2001) Cytochrome P450s and metabolism of xenobiotics. Cell Mol Life Sci 58:737–747

    Article  CAS  PubMed  Google Scholar 

  8. Franck P (2011) Cytochrome P450 metabolizing fatty acids in living organisms. FEBS J 278:181

    Article  Google Scholar 

  9. Pinot F, Beisson F (2011) Cytochrome P450 metabolizing fatty acids in plants: characterization and physiological roles. FEBS J 278:195–205

    Article  CAS  PubMed  Google Scholar 

  10. Nelson DR, Werck-Reichhart D (2011) A P450 centric view of plant evolution. Plant J 66:194–211

    Article  CAS  PubMed  Google Scholar 

  11. Van Bogaert IN, Groeneboer S, Saerens K, Soetaert W (2011) The role of cytochrome P450 monooxygenases in microbial fatty acid metabolism. FEBS J 278:206–221

    Article  PubMed  Google Scholar 

  12. Edgar RC (2004) MUSCLE: mutiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  Google Scholar 

  14. Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S (2004) Comparative genomics of Oryza sativa and Arabidopsis thaliana. Analysis of 727 Cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol 135:756–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Nelson DR (2006) Plant cytochrome P450s from moss to poplar. Phytochem Rev 5:193–204

    Article  CAS  Google Scholar 

  16. Nelson DR, Ming R, Alam M, Schuler MA (2008) Comparison of cytochrome P450 genes from six plant genomes. Trop Plant Biol 1:216–235

    Article  CAS  Google Scholar 

  17. Guttikonda SK et al (2010) Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases. BMC Plant Biol 10:243

    Article  PubMed Central  PubMed  Google Scholar 

  18. Babu PR, Rao KV, Reddy VD (2013) Structural organization and classification of cytochrome P450 genes in flax (Linum usitatissimum L.). Gene 513:156–162

    Article  CAS  PubMed  Google Scholar 

  19. Perry BA (1943) Chromosome number and phylogenetic relationships in the Euphorbiaceae. Am J Bot 30:527–543

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank to Prof. T. Papi Reddy former Head, Department of Genetics, Osmania University for the critical evaluation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vudem Dashavantha Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, M.S., Babu, P.R., Rao, K.V. et al. Organization and Classification of Cytochrome P450 Genes in Castor (Ricinus communis L.). Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 84, 131–143 (2014). https://doi.org/10.1007/s40011-013-0192-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-013-0192-8

Keywords

Navigation