Skip to main content
Log in

Plant Growth Promoting and Metal Bioadsorption Activity of Metal Tolerant Pseudomonas aeruginosa Isolate Characterized from Uranium Ore Deposit

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

In the present study, a metal-tolerant fluorescent pseudomonad isolated from uranium ore rich deposit of Domiasiat in North-East India was identified as Pseudomonas aeruginosa DPs-13 based on morphological, biochemical and molecular analysis. The isolate showed higher tolerance to uranium and other metals like copper, cadmium, zinc and lead when compared with the reference strain P. aeruginosa MTCC2474. When checked for uranyl bioadsorption potential, the isolate showed 94 % (22.5 mg/L) and 72 % (342.7 mg/L) removal of uranium (VI) when challenged with 100 μM (23.8 mg/L) and 2 mM (476 mg/L) uranyl nitrate solutions within 1 h of incubation as compared to 68 % (16.18 mg/L) and 25 % (119 mg/L) when challenged with above concentrations respectively of uranyl nitrate by the reference strain. The isolate was resistant to most of the commonly used antibiotics like Ampicillin, Kanamycin, Chloramphenicol, Erythromycin, Aztreonam, Tetracycline, Ciprofloxin and Streptomycin. The isolate had no phytotoxic effect, produced siderophores, possessed phosphate solubilising ability as well as two antibiotic producing genes, and had antagonistic activity against plant pathogens. Plasmid occurrence was also noticed in the isolate. The isolate from the uranium ore rich site besides being a promising metal tolerant bacterium had potent plant growth promoting activity and can be used to promote plant growth in bioremediation approaches in metal contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moore JW, Ramamoorthy A (1984) Heavy metals in Natural waters: applied monitoring and impact assessment. Springer, New York

    Book  Google Scholar 

  2. Malik A, Ahmad M (1995) Genotoxicity of some waste waters in India. Environ Toxicol Water Qual 10:287–293. doi:10.1002/tox.2530100409

    Article  CAS  Google Scholar 

  3. Lloyd J, Lovley D (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253

    Article  CAS  PubMed  Google Scholar 

  4. Sarma B, Acharya C, Joshi SR (2010) Pseudomonads: a versatile bacterial group exhibiting dual resistance to metals and antibiotics. Afr J Microbiol Res 4:2828–2835

    Google Scholar 

  5. Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47:453–467

    Article  CAS  PubMed  Google Scholar 

  6. Tripathi P, Srivastava S (2007) Development and characterization of nickel accumulating mutants of Aspergillus nidulans. Indian J Microbiol 47:241–250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Cho Y, Kim JS, Crowley DE, Cho B (2003) Growth promotion of the edible fungus Pleurotus ostreatus by fluorescent pseudomonads. FEMS Microbiol Lett 218:271–276

    Article  CAS  PubMed  Google Scholar 

  8. Preston GM (2004) Plant perceptions of plant growth-promoting Pseudomonas. Philos Trans R Soc Lond B Biol Sci 359:907–918

    Article  CAS  PubMed  Google Scholar 

  9. Sayyed RZ, Patel PR (2011) Biocontrol potential of siderophore producing heavy metal resistant Alcaligenes sp. and Pseudomonas aeruginosa RZS3 vis-a`-vis organophosphorus fungicide. Indian J Microbiol 51:266–272. doi:10.1007/s00284-008-9264-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv. 17:319–339. doi:10.1016/S0734-9750(99)00014-2

    Article  PubMed  Google Scholar 

  11. Nair A, Juwarkar AA, Singh SK (2006) Production and characterization of siderophores and application in arsenic removal from contaminated soil. Water Air Soil Pollut 180:199–212. doi:10.1007/s11270-006-9263-2

    Article  Google Scholar 

  12. Sayyed RZ, Chincholkar SB (2010) Growth and siderophore production Alcaligenes faecalis is influenced by heavy metals. Indian J Microbiol 50(2):179–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Brosius J, Dull TJ, Sleeter DD, Noller HF (1981) Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148:107–127

    Article  CAS  PubMed  Google Scholar 

  14. Weisburg WG, Barns SM, DA Pelletier Z, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Altschul SF, Madden TL, Schaeffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  PubMed  Google Scholar 

  17. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  18. Tyler SD, Strathdee CA, Rozee KR, Johnson WM (1995) Oligonucleotide primers designed to differentiate pathogenic pseudomonads on the basis of the sequencing of genes coding for 16S–23S rRNA internal transcribed spacers. Clin Diagn Lab Immunol 2:448–453

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Savvin SB (1961) Analytical use of arsenazo III: determination of thorium, zirconium, uranium and rare earth elements. Talanta 8:673–685

    Article  CAS  Google Scholar 

  20. Kumar R, Acharya C, Joshi SR (2011) Isolation and analyses of uranium tolerant Serratia marcescens strains and their utilization for aerobic uranium U(VI) bioadsorption. J Microbiol 49:568–574. doi:10.1007/s12275-011-0366-0

    Article  CAS  PubMed  Google Scholar 

  21. Schillinger U, Lucke FK (1989) Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 55:1901–1906

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Naik PR, Sahoo N, Goswami D, Ayyadurai N, Sakthivel N (2008) Genetic and functional diversity among fluorescent pseudomonads isolated from the rhizosphere of banana. Microbiol Ecol 56:492–504

    Article  CAS  Google Scholar 

  23. Lenka P, Jha SK, Gothankar S, Tripathi RM, Puranik VD (2009) Suitable gamma energy for gamma-spectrometric determination of 238U in surface soil samples of a high rainfall area in India. J Environ Radioact 100:509–514

    Article  CAS  PubMed  Google Scholar 

  24. Burt R, Wilson MA, Mays MD, Lee CW (2003) Major and trace elements of selected pedons in the USA. J Environ Qual 32:2109–2121

    Article  CAS  PubMed  Google Scholar 

  25. Hassen A, Saidi N, Cherif M, Boudabous A (1998) Resistance of environmental bacteria to heavy metals. Bioresour Technol 64:7–15

    Article  CAS  Google Scholar 

  26. Mergeay M, Nies D, Schiegel HG, gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:238–334

    Google Scholar 

  27. Perron K, Caille O, Rossier C, Delden CV, Dumas J, Köhler T (2004) CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J Biol Chem 279:8761–8768

    Article  CAS  PubMed  Google Scholar 

  28. Caille O, Rossier C, Perron K (2007) A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa. J Bacteriol 189:4561–4568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Lim C, Cooksey DA (1993) Characterization of chromosomal homologs of the plasmid-borne copper resistance operon of pseudomonas syringae. J Bacteriol 175:4492–4498

    CAS  PubMed Central  PubMed  Google Scholar 

  30. El-Deeb B (2009) Plasmid mediated tolerance and removal of heavy metals by enterobacter sp. Am J Biochem Biotechnol 5:47–53

    Article  CAS  Google Scholar 

  31. Raja CE, Selvam GS (2009) Plasmid profile and curing analysis of Pseudomonas aeruginosa as metal resistant. Int J Environ Sci Technol 6:259–266

    Article  CAS  Google Scholar 

  32. Schnider-Keel U, Seematter A, Maurhofer M, Blumer C, Duffy B, Gigot-Bonnefoy C, Reimmann C, Notz R, De’fago G, Haas D, Keel C (2000) Autoinduction of 2 4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol 182:1215–1220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support received from the Department of Information Technology, Ministry of Communication & Information Technology, Government of India is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santa Ram Joshi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarma, B., Acharya, C. & Joshi, S.R. Plant Growth Promoting and Metal Bioadsorption Activity of Metal Tolerant Pseudomonas aeruginosa Isolate Characterized from Uranium Ore Deposit. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 84, 157–164 (2014). https://doi.org/10.1007/s40011-012-0136-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-012-0136-8

Keywords

Navigation