Skip to main content
Log in

Role of Induced Magnetic Field on Hydromagnetic Mixed Convection Flow in Vertical Microannulus in Existence of Radial Magnetic Field

  • Review Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

The present study presents the convective flow of an electrically conducting fluid in vertical microannulus formed by two concentric cylinders in the presence of imposed radial magnetic field and induced magnetic field. The governing equations of the motion are a set of simultaneous ordinary differential equations, and their exact solutions in dimensionless form have been obtained for the velocity field, the induced magnetic field and the temperature field. The expressions for the induced current density and skin friction have also been obtained. Results for various flows characteristic are presented through graphs and tables delineating the effect of various parameters characterizing the flow. Furthermore, it is observed that the reverse flow near the inner surface of outer cylinder is controlled by selecting suitable values of Knudsen number, fluid–wall interaction parameter and radius ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\( C_{\rho 0} \) :

Specific heat at constant pressure

\( \ln \) :

Fluid–wall interaction parameter, \( {{\beta_{t} } \mathord{\left/ {\vphantom {{\beta_{t} } {\beta_{\nu } }}} \right. \kern-0pt} {\beta_{\nu } }} \)

\( g \) :

Gravitational acceleration

Gr :

Grashof number

\( Gr/Re \) :

Mixed convection parameter

\( k_{1} \) :

Radius of the inner cylinder

\( k_{2} \) :

Radius of the outer cylinder

\( Kn \) :

Knudsen number, \( {\lambda \mathord{\left/ {\vphantom {\lambda w}} \right. \kern-0pt} w} \)

\( M \) :

Magnetic field parameter

\( q \) :

Volume flow rate

\( Q \) :

Dimensionless volume flow rate

\( Pr \) :

Prandtl number

\( r^{'}\) :

Dimensional radial coordinate

\( R \) :

Dimensionless radial coordinate

\( \mathop R\limits^{ \wedge } \) :

Specific gas constant

Re :

Reynolds number

\( T \) :

Temperature of fluid

\( T_{0} \) :

Reference temperature

\( T_{1} \) :

Temperature at outer surface of the inner cylinder

\( u \) :

Axial velocity

\( u_{\text{m}} \) :

Mean velocity

U :

Dimensionless axial velocity

\( w \) :

Dimensional gap between the cylinders

\( \sigma_{t} ,\sigma_{v} \) :

Thermal and tangential momentum accommodation coefficients, respectively

\( {{{\text{d}}P^{'}} \mathord{\left/ {\vphantom {{{\text{d}}P^{'}} {{\text{d}}Z^{'}}}} \right. \kern-0pt} {{\text{d}}Z^{'}}} \) :

Pressure gradient along the axis of the microannulus

\( {{{\text{d}}P} \mathord{\left/ {\vphantom {{{\text{d}}P} {{\text{d}}Z}}} \right. \kern-0pt} {{\text{d}}Z}} \) :

Dimensionless pressure gradient along the axis of the microannulus

\({Z^{'}}, {r^{'}}\) :

Axial and radial coordinates, respectively

\( Z,R \) :

Dimensionless axial and radial coordinates, respectively

\( \alpha \) :

Thermal diffusivity

\( \beta_{0} \) :

Coefficient of thermal expansion

\( \beta_{t} ,\beta_{v} \) :

Dimensionless variables

γ :

Ratio of specific heats

\( \mu_{0} \) :

Dynamic viscosity

\( \theta \) :

Dimensionless temperature

ρ 0 :

Density

\( \nu \) :

Fluid kinematic viscosity \( \left( {{{\mu_{0} } \mathord{\left/ {\vphantom {{\mu_{0} } {\rho_{0} }}} \right. \kern-0pt} {\rho_{0} }}} \right) \)

η :

Ratio of radii \( \left( {{{k_{1} } \mathord{\left/ {\vphantom {{k_{1} } {k_{2} }}} \right. \kern-0pt} {k_{2} }}} \right) \)

\( \lambda \) :

Molecular mean free path

\( k_{0} \) :

Thermal conductivity

τ:

Skin friction

References

  1. Weng HC, Chen CK (2009) Drag reduction and heat transfer enhancement over a heated wall of a vertical annular microchannel. Int J Heat Mass Transf 52:1075–1079

    Article  Google Scholar 

  2. Avci M, Aydin O (2009) Mixed convection in a vertical microannulus between two concentric microtubes. J Heat Transf Trans ASME 131:014502

    Article  Google Scholar 

  3. Jha BK, Aina B (2015) Mathematical modelling and exact solution of steady fully developed mixed convection flow in a vertical micro-porous-annulus. J Afr Mat 26:1199–1213

    Article  MathSciNet  Google Scholar 

  4. Sadeghi M, Sadeghi A, Saidi MH (2014) Gaseous slip flow mixed convection in vertical microducts of constant but arbitrary geometry. AIAA J Thermophys Heat Transf 28(4):771–784

    Article  Google Scholar 

  5. Sadeghi M, Baghani MH, Saidi (2014) Gaseous slip flow mixed convection in vertical microducts with constant axial energy input. ASME J Heat Transf 136(3):032501

    Article  Google Scholar 

  6. Weng HC, Jian SJ (2012) Developing mixed convection in a vertical microchannel. Adv Sci Lett 5:1–6

    Article  Google Scholar 

  7. Jha BK, Aina B, Isa Sani (2015) MHD natural convection flow in a vertical micro-concentric-annuli in the presence of radial magnetic field: an exact solution. J Ain Shams Eng. https://doi.org/10.1016/j.asej.2015.07.010

    Article  Google Scholar 

  8. Sheikholeslami M, Gorji-Bandpy M, Ganji DD (2014) Magnetohydrodynamic free convection of Al2O3–water nanofluid considering thermophoresis and Brownian motion effects. Comput Fluids 94:147–160

    Article  MathSciNet  Google Scholar 

  9. Sheikholeslami M, Gorji-Bandpy M (2014) Free convection of ferrofluid in a cavity heated from below in the presence of an external magnetic field. Powder Technol 256:490–498

    Article  Google Scholar 

  10. Sheikholeslami M, Gorji-Bandpy M, Ganji DD (2014) Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid. Powder Technol 254:82–93

    Article  Google Scholar 

  11. Sarveshanand Singh AK (2015) Magnetohydrodynamic free convection between vertical parallel porous plates in the presence of induced magnetic field. SpringerPlus. https://doi.org/10.1186/s40064-015-1097-1

    Article  Google Scholar 

  12. Singh RK, Singh AK (2012) Effect of induced magnetic field on natural convection in vertical concentric annuli. Acta Mech Sin 28(2):315–323

    Article  ADS  MathSciNet  Google Scholar 

  13. Kumar A, Singh AK (2013) Unsteady MHD free convective flow past a semi-infinite vertical wall with induced magnetic field. Appl Math Comput 222:462–471

    MathSciNet  MATH  Google Scholar 

  14. Dileep K, Singh AK (2016) Effects of heat source/sink and induced magnetic field on natural convective flow in vertical concentric annuli. Alex Eng J. https://doi.org/10.1016/j.aej.2016.08.019

    Article  Google Scholar 

  15. Jha BK, Aina B (2016) Role of induced magnetic field on MHD natural convection flow in a vertical microchannel formed by two electrically non-conducting infinite vertical parallel plates. Alex Eng J. https://doi.org/10.1016/j.aej.2016.06.030

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babatunde Aina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

$$ \begin{array}{*{20}l} {D_{1} = \frac{Gr}{Re}\frac{1}{{\left( {1 - \eta } \right)^{2} }}\frac{{A_{1} }}{{\left( {4 - \eta^{2} } \right)}}\left[ {\frac{{4\eta^{2} }}{{\left( {4 - \eta^{2} } \right)}} - \eta^{2} \ln \left( \eta \right)} \right] - \frac{Gr}{Re}\frac{1}{{\left( {1 - \eta } \right)^{2} }}\frac{{A_{0} \eta^{2} }}{{\left( {4 - \eta^{2} } \right)}},} \hfill \\ {D_{2} = \frac{Gr}{Re}\frac{1}{{\left( {1 - \eta } \right)^{2} }}\frac{{A_{1} }}{{\left( {4 - \eta^{2} } \right)}}\left[ {\frac{8\eta }{{\left( {4 - \eta^{2} } \right)}} - 2\eta \ln \left( \eta \right) - \eta } \right] - \frac{Gr}{Re}\frac{1}{{\left( {1 - \eta } \right)^{2} }}\frac{{2A_{0} \eta }}{{\left( {4 - \eta^{2} } \right)}},} \hfill \\ {D_{3} = \frac{Gr}{Re}\frac{1}{{\left( {1 - \eta } \right)^{2} }}\frac{{A_{1} }}{{\left( {4 - \eta^{2} } \right)}}\frac{4}{{\left( {4 - \eta^{2} } \right)}} - \frac{Gr}{Re}\frac{1}{{\left( {1 - \eta } \right)^{2} }}\frac{{A_{0} }}{{\left( {4 - \eta^{2} } \right)}},\quad D_{5} = \frac{1}{{\left( {1 - \eta } \right)^{2} }}\frac{{A_{1} }}{{\left( {4 - \eta^{2} } \right)}},} \hfill \\ {D_{4} = \frac{Gr}{Re}\frac{1}{{\left( {1 - \eta } \right)^{2} }}\frac{{A_{1} }}{{\left( {4 - \eta^{2} } \right)}}\left[ {\frac{8}{{\left( {4 - \eta^{2} } \right)}} - 1} \right] - \frac{Gr}{Re}\frac{1}{{\left( {1 - \eta } \right)^{2} }}\frac{{2A_{0} }}{{\left( {4 - \eta^{2} } \right)}},} \hfill \\ {D_{6} = \left( \eta \right)^{\delta } - \beta_{v} Kn\left( {1 - \eta } \right)\delta \left( \eta \right)^{\delta - 1} ,\quad D_{7} = \left( \eta \right)^{ - \delta } + \beta_{v} Kn\left( {1 - \eta } \right)\delta \left( \eta \right)^{ - \delta - 1} ,} \hfill \\ {D_{8} = \eta^{2} D_{5} - \beta_{v} Kn\left( {1 - \eta } \right)2\eta D_{5} ,\quad D_{9} = \beta_{v} Kn\left( {1 - \eta } \right)D_{2} - D_{1} ,\quad D_{10} = 1 + \beta_{v} Kn\left( {1 - \eta } \right)\delta ,} \hfill \\ {D_{11} = 1 - \beta_{v} Kn\left( {1 - \eta } \right)\delta ,\quad D_{12} = D_{5} + \beta_{v} Kn\left( {1 - \eta } \right)2D_{5} ,\quad D_{13} = - \beta_{v} Kn\left( {1 - \eta } \right)D_{4} - D_{3} ,} \hfill \\ {D_{14} = D_{6} D_{11} - D_{7} D_{10} ,\quad D_{15} = D_{8} D_{11} - D_{7} D_{12} ,\quad D_{16} = D_{9} D_{11} - D_{7} D_{13} ,} \hfill \\ {D_{17} = D_{7} \left( {1 - \eta } \right) - \left( {1 - \eta } \right)D_{11} ,\quad D_{18} = {{D_{16} } \mathord{\left/ {\vphantom {{D_{16} } {D_{14} }}} \right. \kern-0pt} {D_{14} }},\quad D_{19} = {{D_{17} } \mathord{\left/ {\vphantom {{D_{17} } {D_{14} }}} \right. \kern-0pt} {D_{14} }},\quad D_{20} = {{D_{15} } \mathord{\left/ {\vphantom {{D_{15} } {D_{14} }}} \right. \kern-0pt} {D_{14} }},} \hfill \\ {D_{21} = D_{7} D_{10} - D_{6} D_{11} ,\quad D_{22} = D_{8} D_{10} - D_{6} D_{12} ,\quad D_{23} = D_{9} D_{10} - D_{6} D_{13} ,} \hfill \\ {D_{24} = D_{6} \left( {1 - \eta } \right) - \left( {1 - \eta } \right)D_{10} ,\quad D_{25} = {{D_{23} } \mathord{\left/ {\vphantom {{D_{23} } {D_{21} }}} \right. \kern-0pt} {D_{21} }},\quad D_{26} = {{D_{24} } \mathord{\left/ {\vphantom {{D_{24} } {D_{21} }}} \right. \kern-0pt} {D_{21} }},\quad D_{27} = {{D_{22} } \mathord{\left/ {\vphantom {{D_{22} } {D_{21} }}} \right. \kern-0pt} {D_{21} }},} \hfill \\ {D_{28} = \frac{Gr}{Re}\frac{1}{{\left( {1 - \eta } \right)^{2} }}\frac{{A_{1} }}{{\left( {4 - \eta^{2} } \right)}}\left[ {\frac{{2\eta^{2} }}{{\left( {4 - \eta^{2} } \right)}} - \frac{{\eta^{2} \ln \left( \eta \right)}}{2} + \frac{{\eta^{2} }}{4}} \right] - \frac{Gr}{Re}\frac{1}{{\left( {1 - \eta } \right)^{2} }}\frac{{A_{0} \eta^{2} }}{{2\left( {4 - \eta^{2} } \right)}},} \hfill \\ {D_{29} = \frac{Gr}{Re}\frac{1}{{\left( {1 - \eta } \right)^{2} }}\frac{{A_{1} }}{{\left( {4 - \eta^{2} } \right)}}\left[ {\frac{2}{{\left( {4 - \eta^{2} } \right)}} + \frac{1}{4}} \right] - \frac{Gr}{Re}\frac{1}{{\left( {1 - \eta } \right)^{2} }}\frac{{A_{0} }}{{\left( {4 - \eta^{2} } \right)}},\quad D_{30} = 1 - \eta^{\delta } ,\quad D_{31} = \eta^{ - \delta } - 1,} \hfill \\ {D_{32} = \delta D_{29} - \delta D_{28} ,\quad D_{33} = \frac{{\delta D_{5} }}{2} - \frac{{\delta \eta^{2} D_{5} }}{2},\quad D_{34} = D_{19} D_{30} + D_{26} D_{31} ,} \hfill \\ {D_{35} = D_{33} - D_{20} D_{30} - D_{27} D_{31} ,} \hfill \\ {D_{36} = D_{18} D_{30} + D_{25} D_{31} + D_{32} ,\quad D_{37} = - {{D_{35} } \mathord{\left/ {\vphantom {{D_{35} } {D_{34} }}} \right. \kern-0pt} {D_{34} }},\quad D_{37} = - {{D_{35} } \mathord{\left/ {\vphantom {{D_{35} } {D_{34} }}} \right. \kern-0pt} {D_{34} }},\quad D_{39} = {1 \mathord{\left/ {\vphantom {1 {\delta + 2,}}} \right. \kern-0pt} {\delta + 2,}}} \hfill \\ {D_{40} = {{ - 1} \mathord{\left/ {\vphantom {{ - 1} {\delta + 2,}}} \right. \kern-0pt} {\delta + 2,}}\quad D_{41} = \frac{Gr}{Re}\frac{1}{{\left( {1 - \eta } \right)^{2} }}\frac{{A_{0} }}{{4\left( {4 - \delta^{2} } \right)}},\quad D_{42} = \frac{Gr}{Re}\frac{1}{{\left( {1 - \eta } \right)^{2} }}\frac{{A_{1} }}{{4\left( {4 - \delta^{2} } \right)}},} \hfill \\ {D_{43} = \frac{Gr}{Re}\frac{1}{{\left( {1 - \eta } \right)^{2} 4\left( {4 - \delta^{2} } \right)}},\quad D_{44} = D_{39} - D_{39} \left( \eta \right)^{\delta + 2} ,\quad D_{45} = D_{40} - D_{40} \left( \eta \right)^{ - \delta + 2} ,} \hfill \\ {D_{46} = \frac{1 - \eta }{2} - \frac{{\eta^{2} - \eta^{3} }}{2},\quad D_{47} = \eta^{4} - 1,\quad D_{48} = \frac{1}{{4 - \delta^{2} }} + \frac{1}{16} - \frac{{\eta^{2} }}{{4 - \delta^{2} }} + \frac{{\eta^{4} \ln \left( \eta \right)}}{4} - \frac{{\eta^{4} }}{16},} \hfill \\ {D_{49} = D_{43} - D_{43} \left( \eta \right)^{4} ,\quad D_{50} = \frac{{1 - \eta^{2} }}{2},\quad D_{51} = D_{37} D_{19} - D_{20} ,\quad D_{52} = D_{38} D_{19} + D_{18} ,} \hfill \\ \begin{aligned} D_{53} = D_{37} D_{26} - D_{27} ,\quad D_{54} = D_{38} D_{26} + D_{25} ,\quad D_{55} = D_{51} D_{44} + D_{53} D_{45} + D_{37} D_{46} + D_{49} , \hfill \\ D_{56} = D_{52} D_{44} + D_{54} D_{45} + D_{38} D_{46} + D_{41} D_{47} + D_{42} D_{48} , \hfill \\ \end{aligned} \hfill \\ \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, B.K., Aina, B. Role of Induced Magnetic Field on Hydromagnetic Mixed Convection Flow in Vertical Microannulus in Existence of Radial Magnetic Field. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 90, 259–269 (2020). https://doi.org/10.1007/s40010-018-0586-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-018-0586-3

Keywords

Navigation