Skip to main content

Advertisement

Log in

Cryospheric Studies in Indian Himalayan and Polar Region: Current Status, Advances and Future Prospects of Remote Sensing

  • Review Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

Cryosphere studies are very critical for understanding the behaviour of the global climate system. The cryosphere components such snow cover, glacier ice, ice sheets, icebergs, etc. need to be studied, from Earth’s energy and water balance point of view. However, their quantification and mapping is tedious on field using tradition survey methods. This review paper summarizes the major research work done in field of remote sensing based cryosphere studies in Indian Himalaya and Polar Regions. The traditional survey methods using terrestrial photogrammetry and aerial photography for snow and glacier studies are presented, initially. Then, remote sensing methods of snow and glacier mapping using visible, infrared and thermal spectral bands are presented. Later, the application of these techniques and method in Indian conditions is discussed. The advanced methods of microwave sensors based inversion models for snow physical properties retrieval are also explained. The separate sub-sections are given to highlight the use of remote sensing in glacier and polar studies. In each section, the current status and advances of the technology are discussed. The future prospects of remote sensing technology for each cryosphere theme are highlighted with emphasis to Indian scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Photograph: © Royal Geographical Society (with IBG)

Fig. 2

(Source: Hall and Martinec [32])

Fig. 3

(Source: https://www.meted.ucar.edu/satmet/microwave_topics/land_ocean_v2/print.php)

Fig. 4
Fig. 5
Fig. 6

(Source: Paterson [143])

Fig. 7

(Source: The Himalayan Journal)

Fig. 8

Similar content being viewed by others

References

  1. Rees WG (2006) Remote sensing of snow and ice. CRC Press, Boca Raton

    Google Scholar 

  2. Singh P, Jain SK (2002) Snow and glacier melt in the Satluj River at Bhakra Dam in the Western Himalayan region. Hydrol Sci J 47:93–106

    Article  Google Scholar 

  3. Singh P, Singh VP (2001) Snow and glacier hydrology. Water science and technology, vol 37. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  4. Dey B, Kumar O (1982) An apparent relationship between Eurasian snow cover and the advanced period of the Indian summer monsoon. J Appl Meteorol 21:1929–1932

    Article  Google Scholar 

  5. Barnett TP, Dumenil L, Schlese U, Roechner E, Latif M (1989) The effect of Eurasian snow cover on regional and global climate variations. J Atmos Sci 46:661–685

    Article  ADS  Google Scholar 

  6. Halder S, Dirmeyer PA (2017) Relation of Eurasian snow cover and Indian summer monsoon rainfall: importance of the delayed hydrological effect. AMS J Clim 30(4):1273–1289

    Article  ADS  Google Scholar 

  7. Bhambri R, Bolch T (2009) Glacier mapping: a review with special reference to the Indian Himalaya. Prog Phys Geogr 33:672–704

    Article  Google Scholar 

  8. Dhir RD (1951) Feasibility of snow survey in the Himalaya. International Association of Hydrological Sciences, IAHS Publication, vol 32, pp 305–314

  9. Greer JD (1994) Airborne reconnaissance and Mount Everest, an historical perspective, SPIE, vol 2272 airborne reconnaissance XVIII, pp 114–132

  10. Raina VK (2009) Himalayan glaciers—a state-of-art review of glacial studies, glacial retreat and climate change. MOEF discussion paper, by Ministry of Environment and Forests (MOEF), Government of India and G. B. Pant Institute of Himalayan Environment and Development Kosi-Katarmal, Almora, pp 1–60

  11. Frei A, Tedesco M, Lee S, Foster JL, Hall DK, Kelly RE, Robinson DA (2011) A review of global satellite-derived snow products. Adv Space Res 50(8):1007–1029

    Article  ADS  Google Scholar 

  12. Dietz AJ, Kuenzer C, Gessner U, Dech S (2012) Remote sensing of snow—a review of available methods. Int J Remote Sens 33(13):4094–4134

    Article  Google Scholar 

  13. Bhardwaj A, Joshi PK, Sam L, Snehmani S (2016) Remote sensing of alpine glaciers in visible and infrared wavelengths: a survey of advances and prospects. Geocarto Int 31(5):557–574

    Article  Google Scholar 

  14. Bhardwaj A, Sam L, Akanksha F, Torres JM, Kumar R (2016) UAVs as remote sensing platform in glaciology: present applications and future prospects. Remote Sens Environ 175:196–204

    Article  ADS  Google Scholar 

  15. Snehmani S, Singh MK, Gupta RD, Bhardwaj A, Joshi PK (2015) Remote sensing of mountain snow using active microwave sensors: a review. Geocarto Int 30(1):1–27

    Article  Google Scholar 

  16. Thakur PK, Chouksey A, Aggarwal SP, Kumar AS (2017) Polar ice sheet and glacier studies—Indian efforts in last 5 years. Proc Indian Natl Sci Acad 83(2):415–425

    Google Scholar 

  17. Leaf CF (1967) Areal extent of snow cover in relation to streamflow in Central Colorado. In: International Hydrology Symposium, Fort Collins, Colorado, pp 157–164

  18. Singer FS, Popham RW (1963) Non-meteorological observations from satellites. Astronaut Aerosp Eng 1(3):89–92

    Google Scholar 

  19. Martinec J, Rango A (1981) Areal distribution of snow water equivalent evaluated by snow cover monitoring. Water Resour Res 17:1480–1488

    Article  ADS  Google Scholar 

  20. Rango A, Salomonson VV, Foster JL (1977) Seasonal streamflow estimation in the Himalayan region employing meteorological satellite snow cover observations. Water Resour Res 13:109–112

    Article  ADS  Google Scholar 

  21. Rango A, Martinec J (1979) Application of a snowmelt runoff model using Landsat data. Nord Hydrol 10:225–238

    Google Scholar 

  22. Ramamoorthi AS, Subba Rao P (1981) Application of satellite technology for forecasting snow melt runoff of perennial rivers of India. In: Proceedings of second Asian conference on remote sensing, Beijing, China

  23. Andersen T (1982) Operational snow mapping by satellites. In: Proceedings to the exeter symposium, IAHS Publication, July 1982, vol 138, pp 149–154

  24. Rango A, Martinec J (1982) Snow accumulation derived from modified depletion curves of snow coverage. International Association of Hydrological Sciences Publication, vol 138, pp 83–90

  25. Gupta RP, Duggal AJ, Rao SN, Sankar G (1982) Snow cover area versus snow melt runoff relation and its dependence on geomorphology—a study from Beas catchment (Himalaya, India). J Hydrol 58:325–339

    Article  Google Scholar 

  26. Dozier JF (1984) Snow reflectance from Landsat-4 thematic mapper. IEEE Trans Geosci Remote Sens 22(3):323–328

    Article  ADS  Google Scholar 

  27. Matson M (1991) NOAA satellite snow cover data. Paleogeogr Paleoecol 90:213–280

    Google Scholar 

  28. Hall DK, Riggs GA, Salomonson VV, DiGirolamo N, Bayr KJ (2002) MODIS snow cover products. Remote Sens Environ 83:181–194

    Article  ADS  Google Scholar 

  29. Jain SK, Goswami A, Saraf AK (2008) Accuracy assessment of MODIS, NOAA and IRS data in snow cover mapping under Himalayan conditions. Int J Remote Sens 29:5863–5878

    Article  Google Scholar 

  30. Rott H (1986) Prospects of microwave remote sensing for snow hydrology. In: Hydrological applications of remote sensing and remote data transmission (proceeding of the Hamburg symposium), IAHS Publication, vol 145, pp 361–369

  31. Kelly RE (2003) Development of a passive microwave global snow depth retrieval algorithm for Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) data. Radio Sci. https://doi.org/10.1029/2002RS002648

    Google Scholar 

  32. Hall DK, Martinec J (1985) Remote sensing of ice and snow. Chapman and Hall, New York

    Book  Google Scholar 

  33. Hall DK, Foster JL, Verbyla DL, Klein AG, Benson CS (1998) Assessment of snow-cover mapping accuracy in a variety of vegetation-cover densities in central Alaska. Remote Sens Environ 66:129–137

    Article  ADS  Google Scholar 

  34. Wang X, Xie H, Liang T, Huang X (2009) Comparison and validation of MODIS standard and new combination of Terra and Aqua snow cover products in Northern Xinjiang, China. Hydrol Process 23:419–429

    Article  ADS  Google Scholar 

  35. Hall DK, Riggs GA, Foster J, Kumar SV (2010) Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product. Remote Sens Environ 114:496–503

    Article  ADS  Google Scholar 

  36. Nikam BR, Garg V, Gupta PK, Thakur PK, Senthil Kumar A, Chouksey A, Aggarwal SP, Dhote PR, Purohit S (2017). A preliminary assessment report on assessment of long-term and current status (2016–17) of snow cover area in North Western Himalayan river basins using remote Sensing. IIRS technical report, IIRS/WRD/Technical Report/2017/212. p 26

  37. Mishra VD, Sharma JK, Singh KK, Thakur NK, Kumar M (2009) Assessment of different topographic corrections in AWiFS satellite imagery of Himalaya terrain. J Earth Syst Sci 118(1):11–26

    Article  ADS  Google Scholar 

  38. SAC (2016) Monitoring snow and glaciers of Himalayan region, Space Applications Centre, ISRO, Ahmedabad, India. ISBN: 978-93-82760-24-5

  39. Kulkarni AV, Rathore BP (2003) Snow cover monitoring in Baspa basin using IRS WiFS data. Mausam 54:335–340

    Google Scholar 

  40. Kulkarni AV, Singh SK, Mathur P, Mishra VD (2006) Algorithm to monitor snow cover using AWiFS data of RESOURCESAT-1 for the Himalayan region. Int J Remote Sens 27(12):2449–2457

    Article  Google Scholar 

  41. Aggarwal SP, Thakur PK, Nikam BR, Garg V (2014) Integrated approach for Snowmelt Runoff Estimation using Temperature Index Model, Remote sensing and GIS. Curr Sci 106(3):397–407

    Google Scholar 

  42. Jain SK, Goswami A, Saraf AK (2009) Role of elevation and aspect in snow distribution in Western Himalaya. Water Resour Manag 237:1–83

    Google Scholar 

  43. Sharma V, Mishra VD, Joshi PK (2014) Topographic controls on spatio-temporal snow cover distribution in northwest Himalaya. Int J Remote Sens 35(9):3036–3056

    Article  Google Scholar 

  44. Birajdar F, Venkataraman G, Samant H (2016) Monitoring snow cover area using different algorithms on indian remote sensing data. In: Raju N (ed) Geostatistical and geospatial approaches for the characterization of natural resources in the environment. Springer, Cham

    Google Scholar 

  45. Gupta RP, Haritashya UK, Singh P (2005) Mapping dry/wet snow cover in the Indian Himalaya using IRS multispectral imagery. Remote Sens Environ 97:458–469

    Article  ADS  Google Scholar 

  46. Negi HS, Mishra VD, Mathur P (2005) Change detection study for snow cover mountains using remote sensing and ground based measurements. J Indian Soc Remote Sens 33(2):245–251

    Article  Google Scholar 

  47. Kulkarni A, Rathore BP, Singh SK, Ajai A (2010) Distribution of seasonal snow cover in central and Western Himalaya. Ann Glaciol 51(54):121–128

    Article  ADS  Google Scholar 

  48. Dey B, Goswami DC, Rango A (1983) Utilization of satellite snow cover observations for seasonal streamflow estimates in the Western Himalaya. Nord Hydrol 14:257–266

    Google Scholar 

  49. Martinec J, Rango A, Roberts R (1994) The snowmelt runoff model (SRM) user′s manual. In: Baumgartner MF (ed) Geographica Bernensia, P 29. Departmen of Geography, University of Berne, Berne

    Google Scholar 

  50. Jain SK, Goswami A, Saraf AK (2010) Snowmelt runoff modeling in a Himalayan basin with the aid of satellite data. Int J Remote Sens 31(24):6603–6618

    Article  Google Scholar 

  51. Prasad VH, Roy PS (2005) Estimation of snowmelt runoff in Beas Basin, India. Geocarto Int 20(2):41–47

    Article  Google Scholar 

  52. Thakur PK, Aggarwal SP, Radchenko Y (2009) Snow melt runoff and climate change studies in Manali sub-basin of Beas river, India. In: Proceedings of national symposium on climate change and water resources in India (CCWRIN), IAH, 18–19 Nov, NIH Roorkee, India

  53. Chang ATC, Foster L, Hall DK (1987) Nimbus-7 SMMR derived global snow cover parameters. Ann Glaciol 9:39–44

    Article  ADS  Google Scholar 

  54. König M, Winther J, Isaksson E (2001) Measuring snow and glacier ice properties from satellite. Rev Geophys 39:1–27

    Article  ADS  Google Scholar 

  55. Amlien J (2008) Remote sensing of snow with passive microwave radiometers. A review of current algorithms, Report No. 1019, Norsk Regnesentral, Oslo

  56. Foster JL, Hall DK, Chang ATC (1984) An overview of passive microwave snow research and results. Rev Geophys Space Phys 22:195–208

    Article  ADS  Google Scholar 

  57. Grody NC (1991) Classification of snow cover and precipitation using the special sensor microwave/imager (SSM/I). J Geophys Res 96(D4):7423–7435

    Article  ADS  Google Scholar 

  58. Chen C, Nijssen B, Guo J, Tsang L, Wood AW, Hwang J, Lettenmaier DP (2001) Passive microwave remote sensing of snow constrained by hydrological simulations. IEEE Trans Geosci Remote Sens 39:1744–1756

    Article  ADS  Google Scholar 

  59. Saraf AK, Foster JL, Singh P, Tarafdar S (1999) Passive microwave data for snow-depth and snow-extent estimations in the Himalayan Mountains. Int J Remote Sens 20(1):83–95

    Article  Google Scholar 

  60. Chang ATC, Foster JL, Hall DK (1992) The use of microwave radiometer data for characterizing snow storage in western China. Ann Glaciol 16:215–219

    Article  ADS  Google Scholar 

  61. Singh KK, Mishra VD (2006) Snow cover study of northwest Himalaya using passive microwave remote sensing data. In: Proceedings of SPIE 6410, Microwave remote sensing of the atmosphere and environment V, p 641014. https://doi.org/10.1117/12.693942

  62. Singh KK, Mishra VD, Garg RK (2007) Microwave response of seasonal snow cover measured by using a ground-based radiometer at 6.93 and 18.7 GHz frequencies and at dual polarization. J Indian Soc Remote Sens 35:243–251

    Article  Google Scholar 

  63. Rott H, Mätzler C (1987) Possibilities and limitations of synthetic aperture radar for snow and glacier surveying. Ann Glaciol 9:195–199

    Article  ADS  Google Scholar 

  64. Koskinen J, Pulliainen J, Hallikainen M (2000) Effect of snow wetness to C-band backscatter—a modeling approach, Report 41. Laboratory of Space Technology, Helsinki University of Technology, Espoo

    Google Scholar 

  65. Thakur PK, Garg RD, Aggarwal SP, Garg PK, Shi J (2013) Snow density retrieval using SAR data: algorithm validation and applications in part of North Western Himalaya. Cryosphere Discuss 7:1927–1960

    Article  ADS  Google Scholar 

  66. Nagler T, Rott H (2000) Retrieval of wet snow by means of multitemporal SAR data. IEEE Trans Geosci Remote Sens 38(2):754–765

    Article  ADS  Google Scholar 

  67. Thakur PK, Aggarwal SP, Arun G, Sood S, Kumar AS, Mani S, Dobhal DP (2017) Estimation of snow cover area, snow physical properties and glacier classification in parts of Western Himalaya using C-band SAR data. J Indian Soc Remote Sens (JISRS) 45(3):525–539

    Article  Google Scholar 

  68. Negi HS, Singh SK, Kulkarni AV, Semwal BS (2010) Field-based spectral reflectance measurements of seasonal snow cover in the Indian Himalaya. Int J Remote Sens 31(9):2393–2417

    Article  Google Scholar 

  69. Painter TH, Rittger K, Mckenzie C, Slaughter P, Davis RE, Dozier J (2009) Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens Environ 113:868–879

    Article  ADS  Google Scholar 

  70. Singh SK, Kulkarni AV, Chaudhary BS (2010) Hyperspectral analysis of snow reflectance to understand the effects of contamination and grain size. Ann Glaciol 54(44):83–88

    Article  ADS  Google Scholar 

  71. Garg V, Aggarwal SP, Thakur PK, Nikam BR (2014) Snow and its grain size mapping using hyperspectral remote sensing data. In: Interactive session in ISPRS TC VIII international symposium on operational remote sensing applications: opportunities, progress and challenges, Annual convention of ISRS and ISG and joint sessions with ISPRS TC IV and TC VI, hosted by National Remote, Sensing Centre, Indian Space Research Organisation, Hyderabad, India, Dec 09–12, 2014

  72. Chang A, Foster J, Hall D, Goodison B, Walker A, Metcalfe J (1997) Snow parameters derived from microwave measurements during the BOREAS winter field campaign. J Geophys Res 102(D24):29663–29671

    Article  ADS  Google Scholar 

  73. Clifford D (2010) Global estimates of snow water equivalent from passive microwave instruments: history, challenges and future developments. Int J Remote Sens 31:3707–3726

    Article  Google Scholar 

  74. Foster J, Sun C, Walker JP, Kelly R, Chang A, Dong J, Powell H (2005) Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sens Environ 94:187–203

    Article  ADS  Google Scholar 

  75. Chang A, Foster J, Hall D (1990) Satellite sensor estimates of Northern Hemisphere snow volume. Int J Remote Sens 11(1):167–171

    Article  Google Scholar 

  76. Das I, Sarwade RN (2008) Snow depth estimation over north-western Indian Himalaya using AMSR-E. Int J Remote Sens 29–14:4237–4248

    Article  Google Scholar 

  77. Kumar V, Rao YS, VenkataramanG, Sarwade R (2006) Analysis of aqua AMSR-E derived snow water equivalent over Himalayan snow covered regions. In: IEEE international conference on geoscience and remote sensing symposium, IGARSS 2006, 10251994, pp 706–709

  78. Foster JL, Chang ATC, Hall DK, Rango A (1991) Derivation of snow water equivalent in Boreal forests using microwave radiometry. Arctic 44:147–152

    Article  Google Scholar 

  79. Singh KK, Mishra VD, Negi HS (2007) Evaluation of snow parameters using passive microwave remote sensing. Def Sci J 57:271–278

    Article  Google Scholar 

  80. Hallikainen M, Ulaby FT, Abdelrazik M (1986) Dielectric properties of snow in the 3–37 GHz range. IEEE Trans Antennas Propag AP34:1329–1340

    Article  ADS  Google Scholar 

  81. Thakur PK, Aggarwal SP, Garg PK, Garg RD, Mani S, Pandit A, Kumar S (2012) Snow physical parameter estimation using space based SAR. Geocarto Int 27:263–288

    Article  Google Scholar 

  82. Ulaby FT, Stiles WH (1980) The active and passive microwave response to snow parameters, Part II: water equivalent of dry snow. J Geophys Res 83:1045–1049

    Article  ADS  Google Scholar 

  83. Michel G, Ferro-Famil L (2016) Penetration depth of synthetic aperture radar signals in ice and snow: an analytical approach. Workshop Remote Sensing and Modeling of Surface Properties, March 2016

  84. Ulaby FT, Moore RK, Fung AK (1986) Microwave remote sensing, active and passive, from theory to applications, vol III. Addison-Wesley Publishing Company, Boston

    Google Scholar 

  85. Drinkwater MR (1989) LIMEX’87 ice surface characteristics: implications for C-band SAR backscatter signatures. IEEE Trans Geosci Remote Sens 27(5):501–513

    Article  ADS  Google Scholar 

  86. Ambach W, Denoth A (1980) The dielectric behaviour of snow: a study versus liquid water content. NASA workshop on microwave remote sensing of snowpack properties, Rango A (ed). In: NASA conference publication, vol 2153, pp 59–62

  87. Mätzler C (1996) Microwave permittivity of dry snow. IEEE Trans Geosci Remote Sens 34:573–581

    Article  ADS  Google Scholar 

  88. Looyenga H (1965) Dielectric constant of heterogeneous mixtures. Physica 21:401–406

    Article  ADS  Google Scholar 

  89. Tiuri M, Sihvola A, Nyfors E, Hallikainen M (1984) The complex dielectric constant of snow at microwave frequencies. IEEE J Ocean Eng 9:377–382

    Article  Google Scholar 

  90. Hallikainen M, Winebrenner DP (1992) The physical basis for sea ice remote sensing. In: Carsey FD (ed) Microwave remote sensing of sea ice. American Geophysical Union, Washington, DC

    Google Scholar 

  91. Rott H, Mätzler C, Strobl D (1986) The potential of SAR in a snow and glacier monitoring system. In: Proceedings of the SAR applications workshop, Frascati, Italy, pp 25–35

  92. Rott H (1997) Capabilities of microwave sensors for monitoring areal extent and physical properties of the snowpack. In: Sorooshian S, Gupta HV, Rodda SC (eds) Land surface processes in hydrology. NATO ASI series on global environmental change, vol 46. Springer, Berlin, pp 135–167

    Chapter  Google Scholar 

  93. Shi J (2008) Active microwave remote sensing systems and applications to snow monitoring. In: Liang S (ed) Advances in land remote sensing. Springer, Berlin, pp 19–49

    Chapter  Google Scholar 

  94. Singh G, Venkataraman G (2007) Snow wetness estimation using advanced synthetic aperture radar data. J Appl Remote Sens 1:013521

    Article  Google Scholar 

  95. Singh G, Venkataraman G (2009) Snow density estimation using polarimetric ASAR data. In: Proceedings of IEEE IGARSS09, vol 2, pp II-630–II-633

  96. Singh G, Venkataraman G (2010) Snow permittivity retrieval inversion algorithm for estimating snow wetness. Geocarto Int 25(3):187–212

    Article  Google Scholar 

  97. Shi J, Dozier J (1995) Inferring snow wetness using C-band data from SIR-C’s polarimetric synthetic aperture radar. IEEE Trans Geosci Remote Sens 33:905–914

    Article  ADS  Google Scholar 

  98. Shi J, Dozier J (2000) Estimation of snow water equivalence using SIR-C/X SAR, Part I: inferring snow density and subsurface properties. IEEE Trans Geosci Remote Sens 38:2465–2474

    Article  ADS  Google Scholar 

  99. Thakur PK, Dixit A, Chouksey A, Aggarwal SP, Kumar AS (2016) Ice sheet features identification, glacier velocity estimation and glacier zones classification using high resolution optical and SAR data. In: SPIE Asia-Pacific remote sensing conference during April 4–7, 2016 at New Delhi, India, Proceedings of SPIE 9877: 987719-1-16. https://doi.org/10.1117/12.2224027

  100. Surendar M, Bhattacharya A, Singh G, Venkataraman G (2015) Estimation of snow density using full-polarimetric synthetic aperture radar (SAR) data. Phys Chem Earth 83–84:156–165

    Article  Google Scholar 

  101. Foster JL, Hall DK, Eylander JB, Riggs GA, Nghiem SV, Tedesco M, Kim E, Montesano PM, Kelly REJ, Casey KA, Choudhury B (2011) A blended global snow product using visible, passive microwave and scatterometer satellite data. Int J Remote Sens 32:1371–1395

    Article  Google Scholar 

  102. Bothale RV, Rao PVN, Dutt CBS, Dadhwal VK (2015) Detection of snow melt and freezing in Himalaya using OSCAT data. J Earth Syst Sci 124(1):101–113

    Article  ADS  Google Scholar 

  103. Koskinen J, Metsämäki S, Grandell J, Jänne S, Matikainen L, Hallikainen M (1999) Snow monitoring using radar and optical satellite data. Remote Sens Environ 69(1):16–29

    Article  ADS  Google Scholar 

  104. Tait AB, Hall DK, Foster JL, Armstrong RL (2000) Utilizing multiple datasets for snow-cover mapping. Remote Sens Environ 72:111–126

    Article  ADS  Google Scholar 

  105. Liang T, Zhang X, Xie H, Wu C, Feng Q, Huang X, Chen Q (2008) Towards improved daily snow cover mapping with advanced combination of MODIS and AMSR-E measurements. Remote Sens Environ 112:3750–3761

    Article  ADS  Google Scholar 

  106. Gao Y, Xie H, Lu N, Yao T, Liang T (2010) Toward advanced daily cloud-free snow cover and snow water equivalent products from Terra-Aqua MODIS and Aqua AMSR-E measurements. J Hydrol 385:23–35

    Article  Google Scholar 

  107. Romanov P (2017) Global multisensor automated satellite-based snow and ice mapping system (GMASI) for cryosphere monitoring. Remote Sens Environ 196:42–55

    Article  ADS  Google Scholar 

  108. Solberg R, Rudjord O, Salberg AB, Killie MA (2014) A multi-sensor multi temporal algorithm for snow cover extent retrieval from optical and passive microwave data. In: 7th EARSeL workshop on land ice and snow 3–6 Feb 2014, Bern, Switzerland. http://www.earsel.org/SIG/Snow-Ice/files/oral_ws2014/Solberg_2014_EARSeL.pdf

  109. Tedesco M, Pulliainen J, Takala M, Hallikainen M, Pampaloni P (2004) Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data. Remote Sens Environ 90(1):76–85

    Article  ADS  Google Scholar 

  110. Coccia A, Trampuz C, Imbembo E, Meta A (2011) First results of snow SAR, the new X-and Ku-band polarimetric airborne SAR sensor supporting the CoReH2O mission. Workshop on advanced RF sensors and remote sensing instruments, ESA/ESTEC, Noordwijk, NL, 13–15 Sept 2011

  111. Shi J, Dong X, Zhao T, Liu H, Wang Z, Du J, Jiang L, Du Y, Ji D, Xiong C (2014) Observing earth’s water cycle from space. In: Proceedings of the SPIE international Asia-Pacific environmental remote sensing symposium, Beijing, China, 13–16 Oct 2014

  112. Cui Y, Xiong C, Lemmetyinen J, Shi J, Jiang L, Peng B, Li H, Zhao T, Ji D, Hu T (2016) Estimating snow water equivalent with backscattering at X and Ku band based on absorption loss. Remote Sens 8(505):1–18

    Google Scholar 

  113. Rott H, Yueh SH, Cline DW, Duguay C, Essery R, Haas C, Heliere F, Kern M, Macelloni G, Malnes E (2010) Cold regions hydrology high-resolution observatory for snow and cold land processes. Proc IEEE 98:752–765

    Article  Google Scholar 

  114. Rott H, Nagler T, Heidinger M, Müller F, Macelloni G et al (2012) Development of snow retrieval algorithms for CoReH2O. Final report. ESA ESTEC Contract No. 22830/09/NL/JC, Jan 2012

  115. Nghiem SV, Tsai WY (2001) Global snow cover monitoring with spaceborne Ku-band scatterometer. IEEE Trans Geosci Remote Sens 39(10):2118–2134

    Article  ADS  Google Scholar 

  116. Yueh S, Cline D, Elder K (2008) POLSCAT Ku-band radar remote sensing of terrestrial snow cover. In: IEEE proceedings international geoscience and remote sensing symposium, July 7–11, 2008, Boston, MA, USA. https://doi.org/10.1109/IGARSS.2008.4779276

  117. Guneriussen T, Høgda KA, Johnsen H, Lauknes I (2001) InSAR for estimation of changes in snow water equivalent of dry snow. IEEE Trans Geosci Remote Sens 39:2101–2108

    Article  ADS  Google Scholar 

  118. Engen G, Guneriussen T, Overrein Ø (2004) Delta-K interferometric SAR technique for snow water equivalent (SWE) retrieval. IEEE Geosci Remote Sens Lett 1(2):57–61

    Article  ADS  Google Scholar 

  119. Bach H, Appel F, Loew A, Ludwig R, Mauser W, Waske B, Merkel U, Schulz W (2004) Assimilation of snow properties derived from ASAR wide swath data in a hydrological model of the Neckar catchment for improved flood forecast. In: Proceedings of the 2004 Envisat and ERS symposium (ESA SP-572), 6–10 Sept 2004, Salzburg, Austria. Edited by Lacoste H, Ouwehand L. Published on CD-Rom, #263.1

  120. Phan XV, Ferro-Famil L, Gay M, Durand Y, Morin S, Allain S, D’Urso G, Girard A (2014) 1D-Var multilayer assimilation of X-band SAR data into a detailed snowpack model. Cryopsphere 8:1975–1987

    Article  ADS  Google Scholar 

  121. Pellika P, Rees WG (2009) Remote sensing of glaciers. Taylor & Francis, London

    Google Scholar 

  122. Garwood EJ (1902) Notes on a map of “The Glaciers of Kangchenjunga”, with remarks on some of the physical features of the district. Geogr J 20:13–24

    Article  Google Scholar 

  123. Mason K (1940) Upper Shayok glaciers, 1939. Himalayan J 12:52–65

    Google Scholar 

  124. Enuerlein G (1934) The Russo-German Alai-Pamir expedition, 1928. Deutsche EntomologischeZeitschrift 2–3:129–146

    Google Scholar 

  125. Finsterwalder R, Pillewizer W (1939) Photogrammetric studies of glaciers in high Asia. Himalayan J 11:107–113

    Google Scholar 

  126. Vohra CP (1980) Some problems of glacier inventory in the Himalaya. In: Proceedings of the Riederalp workshop, Sept 1978, IAHS-AISH Publication, vol 126, pp 67–74

  127. Agarwal NK (1989) Terrestrial photogrammetric mapping of the Neh-Nar glacier in Himalaya, India. ISPRS J Photogramm Remote Sens 44:245–252

    Article  ADS  Google Scholar 

  128. Agarwal NK (2001) Remote sensing for glacier mapping and monitoring. Geol Surv India Spec Publ 53:201–206

    Google Scholar 

  129. Patrington KC (1998) Discrimination of glacier facies using multi-temporal SAR data. J Glaciol 44(146):42–53

    Article  Google Scholar 

  130. Bhambri R, Bolch T, Chaujar RK, Kulshreshta SC (2011) Glacier changes in the Garhwal Himalaya, India 1968–2006 based on remote sensing. J Glaciol 57(203):543–556

    Article  Google Scholar 

  131. Shukla A, Arora MK, Gupta RP (2010) Synergistic approach for mapping debris-covered glaciers using optical–thermal remote sensing data with inputs from Geomorphometric parameters. Remote Sens Environ 114(7):1378–1387

    Article  ADS  Google Scholar 

  132. Dhanju MS, Buch A (1989) Remote sensing of Himalayan glaciers. In: Proceedings of national meet on Himalayan glaciology. Ministry of Science and Technology, Government of India, New Delhi, pp 193–213

  133. Bahuguna IM, Kulkarni AV, Nayak S (2004) DEM from IRS-1C PAN stereo coverages over Himalayan glaciated region—accuracy and its utility. Int J Remote Sens 25:4029–4041

    Article  Google Scholar 

  134. Bhambri R, Bolch T, Chaujar RK (2011) Mapping of debris-covered glaciers in the GarhwalHimalaya using ASTER DEMs and thermal data. Int J Remote Sens 32:8095–8119

    Article  Google Scholar 

  135. Bhardwaj A, Joshi PK, Singh MK, Sam L, Gupta RD (2014) Mapping debris covered glaciers and identifying factors affecting the accuracy. Cold Reg Sci Technol 106–107:161–174

    Article  Google Scholar 

  136. Bahuguna IM, Kulkarni AV, Nayak S, Rathore BP, Negi HS, Mather P (2007) Himalayan glacier retreat using IRS 1C PAN stereo data. Int J Remote Sens 28:437–442

    Article  Google Scholar 

  137. Bhambri R, Bolch T, Chaujar RK (2012) Frontal recession of Gangotri Glacier, Garhwal Himalaya, from 1965 to 2006, measured through high resolution remote sensing data. Curr Sci 102:489–494

    Google Scholar 

  138. Thakur PK, Garg V, Khalzan P, Aggarwal SP (2012b) Gangotri glacier study using remote sensing, GIS and long term temperature data. In: Proceedings of national symposium on water resources management in changing environment (WARMICE, 2012) held at NIH, Roorkee during 8–9 Feb, 2012, pp 209–218

  139. Kulkarni AV, Bahuguna IM, Rathore BP, Singh SK, Randhawa SS, Sood RK, Dhar S (2007) Glacial retreat in Himalaya using Indian remote sensing satellite data. Curr Sci 92(1):69–74

    Google Scholar 

  140. Raina VK, Srivastava D (2008) Glacier atlas of India. Geological Society of India, Bangalore, p 316

    Google Scholar 

  141. Sharma AK, Singh SK, Kulkarni AV, Ajai (2013) Glacier inventory in Indus, Ganga and Brahmaputra basins of the Himalaya. National Academy Science Letters, ISSN 0250-541X, vol 36, no 5, pp 497–505

  142. Bhardwaj A, Joshi PK, Sam L, Singh MK, Singh S, Kumar R (2015) Applicability of Landsat 8 data for characterizing glacier facies and supraglacial debris. Int J Appl Earth Obs Geoinf 38:51–64

    Article  Google Scholar 

  143. Paterson WSB (1994) Physics of glaciers, 3rd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  144. Roy BC (2001) Geodatic, geophysical and surveying techniques for evaluation of glacier mass balance and dynamics. Geol Surv India Spec Publ 53:337–345

    Google Scholar 

  145. Bhambri R, Bolch T, Kawishwar P, Dobhal DP, Srivastava D, Pratap B (2013) Heterogeneity in glacier response in the upper Shyok valley, northeast Karakoram. Cryosphere 7:1385–1398

    Article  ADS  Google Scholar 

  146. Bamber JL, Rivera A (2007) A review of remote sensing methods for glacier mass balance determination. Global Planet Change 59:138–148

    Article  ADS  Google Scholar 

  147. Kumar V, Venkataramana G, Hogda KA (2011) Glacier surface velocity estimation using SAR interferometry technique applying ascending and descending passes in Himalaya. Int J Appl Earth Obs Geoinform 13:545–551

    Article  Google Scholar 

  148. Joughin I, Smith BE, Abdalati W (2010) Glaciological advances made with interferometric synthetic aperture radar. J Glaciol 56(200):1026–1041

    Article  Google Scholar 

  149. Berthier E et al (2005) Surface motion of mountain glaciers derived from satellite optical imagery. Remote Sens Environ 95(1):14–28

    Article  ADS  Google Scholar 

  150. Gantayat P, Kulkarni AV, Srinivasan J (2014) Estimation of ice thickness using surface velocities and slope: case study of Gangotri glacier. India J Glaciol 60(220):277–282

    Article  ADS  Google Scholar 

  151. Leprince S, Barbot S, Ayoub F, Avouac JP (2007) Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans Geosci Remote Sens 45(6):1529–1558

    Article  ADS  Google Scholar 

  152. Tiwari RK, Gupta RP, Arora MK (2014) Estimation of surface ice velocity of Chhota-Shigri glacier using sub-pixel ASTER image correlation. Curr Sci 106(6):853–859

    Google Scholar 

  153. Kulkarni AV (1992) Mass balance of Himalayan glaciers using AAR and ELA methods. J Glaciol 38(128):101–104

    Article  Google Scholar 

  154. Bhutiyani MR (1999) Mass-balance studies on Siachen Glacier in the Nubra Valley, Karakoram Himalaya, India. J Glaciol 45(149):112–118

    Article  Google Scholar 

  155. Berthier E, Arnaud Y, Kumar R, Ahmad S, Wagnon P, Chevallier P (2007) Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sens Environ 108:327–338

    Article  ADS  Google Scholar 

  156. Berthier E, Arnaud Y, Vincent C, Remy F (2006) Biases of SRTM in high-mountain areas: implications for the monitoring of glacier volume changes. Geophys Res Lett 33:L08502. https://doi.org/10.1029/2006GL025862

    Article  ADS  Google Scholar 

  157. Cogley JG (2009) Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann Glaciol 50(50):96–100

    Article  ADS  Google Scholar 

  158. Dobhal DP, Gergan JT, Thayyen RJ (2008) Mass balance studies of the Dokriani Glacier from 1992 to 2000, Garhwal Himalaya, India. Bull Glaciol Res Jpn Soc Snow Ice 25:9–17

    Google Scholar 

  159. Wagnon P, Linda A, Arnaud Y, Kumar R, Sharma P, Vincent C, Pottakal JG, Berthier E, Ramanathan A, Hasnain SI, Chevallier P (2007) Four years of mass balance on ChhotaShigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the Western Himalaya. J Glaciol 53(183):603–611

    Article  Google Scholar 

  160. Azam MF, Wagnon P, Ramanathan A, Vincent C, Sharma P, Arnaud Y, Linda A, Pottakkal JG, Chevallier P, Singh VB, Berthier E (2012) From balance to imbalance: a shift in the dynamic behaviour of ChhotaShigri Glacier (Western Himalaya, India). J Glaciol 58(208):315–324

    Article  Google Scholar 

  161. Pratap B, Dobhal DP, Bhambri R, Mehta M, Tewari VC (2016) Four decades of glacier mass balance observations in the Indian Himalaya. Reg Environ Change 16:643–658

    Article  Google Scholar 

  162. Tawde SA, Kulkarni AV, Bala G (2017) An estimate of glacier mass balance for the Chandra basin, Western Himalaya, for the period 1984–2012. Ann Glaciol. https://doi.org/10.1017/aog.2017.18

    Google Scholar 

  163. Kääb A, Berthier E, Nuth C, Gardelle J, Arnaud Y (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalaya. Nature 488(7412):495–498

    Article  ADS  Google Scholar 

  164. Haq MA (2013) Recent elevation changes of some Garhwal Himalayan glaciers derived from ICEsat laser altimetry. In: 14th Esri India user conference 2013

  165. Berthier E, Vincent C, Magnússon E, Gunnlaugsson ÁP, Pitte P, Le Meur E, Masiokas M, Ruiz L, Pálsson F, Belart JMC, Wagnon P (2014) Glacier topography and elevation changes derived from Pléiades sub-meter stereo images. Cryosphere 8:2275–2291

    Article  ADS  Google Scholar 

  166. Immerzeel WW, Kraaijenbrink PDA, Shea JM, Shrestha AB, Pellicciotti F, Bierkens MFP, de Jong SM (2014) High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sens Environ 150:93–103

    Article  ADS  Google Scholar 

  167. Papasodoro C, Royer A, Langlois A, Berthier E (2016) Potential of RADARSAT-2 stereo radargrammetry for the generation of glacier DEMs. J Glaciol 62(233):486–496

    Article  Google Scholar 

  168. Bindschadler R (1998) Monitoring ice sheet behaviour from space. Rev Geophys 36:79–104

    Article  ADS  Google Scholar 

  169. Nath AN (1988) Remote sensed data analysis for geology and glacial geology of Wohlthat Muhlig-Hofmann Mountain Chain in Queen Maud Land, East Antarctica. In: Fifth Indian expedition to Antarctica, Scientific Report, Department of Ocean Development, Technical Publication, vol 5, pp 385–418

  170. Srivastava D, Kaul A, Singh RK, Mukerji S, Jayaram S (1988) Some observations on the glacial geomorphological features of Wohlthat Mountains, Central Queen Maud Land, Antarctica. In: Fifth Indian expedition to Antarctica, Scientific Report, Department of Ocean Development, Technical Publication, vol 5, pp 211–218

  171. Kumar AS, Thakur PK, Aggarwal SP, Dixit A, Dadhwal VK, Nagaraja R, Aparna N, Ratnakumar KV (2015) Glimpse of Antarctica ice sheet features and glacier landforms—as viewed by Cartosat-2. Image album published by Indian Institute of Remote Sensing (IIRS), Dehradun and National Remote Sensing Centre (NRSC), Hyderabad

  172. Jawak SD, Luis AJ (2014) A semiautomatic extraction of Antarctic lake features using WorldView-2 imagery. Photogramm Eng Remote Sens 80(10):939–952

    Article  Google Scholar 

  173. Jawak SD, Bidawe TG, Luis AJ (2015) A review on applications of imaging synthetic aperture radar with a special focus on cryospheric studies. Adv Remote Sens 4(2):163–175

    Article  Google Scholar 

  174. Shrivastava PK, Asthana R, Roy SK (2011) The ice sheet dynamics around Dakshin Gangotri glacier, Schirmacher Oasis, East Antarctica vis-a-vis topography and meteorological parameters. J Geol Soc India 78(2):117–123

    Article  Google Scholar 

  175. Sunil PS, Reddy CD, Ponraj M, Dhar A, Jayapaul D (2007) GPS determination of the velocity and strain rate field on Schirmacher Glacier, central Dronning Maud Land, Antarctica. J Glaciol 53(183):558–564

    Article  Google Scholar 

  176. National snow and ice data centre, NSIDC (2017). https://nsidc.org/. Accessed 20 Jun 2017

  177. Majumdar TJ, Mohanty KK (2000) Detection of areal snow cover changes over Antarctica using SSM/I passive microwave data. Curr Sci 79(5):648–651

    Google Scholar 

  178. Dash MK, Bhandari SM, Vyas NK, Khare N, Mitra A, Pandey PC (2001) Oceansat- MSMR imaging of the Antarctic and the Southern Polar Ocean. Int J Remote Sens 22:3253–3259

    Article  Google Scholar 

  179. Vyas NK, Dash MK, Bhandari SM, Khare N, Mitra A, Pandey PC (2003) On the secular trend in sea ice extent over the Antarctic region based on Oceansat-1 MSMR observations. Int J Remote Sens 24:2277–2287

    Article  Google Scholar 

  180. Bhandari SM, Vyas NK, Dash M, Khanolkar A, Sharma N, Khare N, Pandey PC (2005) Simultenous MSMR and SSM/I observations and analysis of sea-ice characteristics over the Antarctic region. Int J Remote Sens 26:3123–3136

    Article  Google Scholar 

  181. Manjul SS, Narayanbabu P, Samudraiah DR (2010) Design and development of field radiometers for ground truth data collection at Antarctica. J Indian Soc Remote Sens 38:193–202

    Article  Google Scholar 

  182. Singh KK, Mishra VD, Sood S, Kumar M (2013) 3-Decadal changes in sea ice melting and freezing pattern in Antarctica using SSM/I data. J Indian Soc Remote Sens 41(4):947–956

    Article  Google Scholar 

  183. SAC (2017) Polar science. http://vedas.sac.gov.in:8080/vedas_web/vedas_viewport_polar.jsp

  184. Rajak DR, Singh RKK, Jayaprasad P, Oza SR, Sharma R, Kumar R (2015) Sea ice occurrence probability data and its applications over the Antarctic. J Geomatics 9:193–197

    Google Scholar 

  185. Bhandari SM, Khare N (2009) Investigations of the seasonality oscillating sea-ice edge over the Southern Ocean based on Oceansat-1 MSMR and QuikSCAT observations. Indian J Geosci 63:221–228

    Google Scholar 

  186. Oza SR, Singh RKK, Vyas NK, Sarkar A (2010) Recent trends of Arctic and Antarctic summer sea-ice cover observed from space-borne scatterometer. J Indian Soc Remote Sens 38:611–616

    Article  Google Scholar 

  187. Oza SR, Singh RKK, Vyas NK, Sarkar A (2011) Study of Inter-annual variations in surface melting over Amery Ice Shelf, East Antarctica, using space-borne scatterometer data. J Earth Syst Sci 120:329–336

    Article  ADS  Google Scholar 

  188. Bothale RV, Rao PVN, Dutt CBS, Dadhwal VK, Maurya D (2015) Spatio-temporal dynamics of surface melting over Antarctica using OSCAT and QuikSCATscatterometer data (2001–2014). Curr Sci 109(4):25

    Google Scholar 

  189. Jawak SD, Vadlamani S, Luis AJ (2015) A synoptic review on deriving bathymetry information using remote sensing technologies: models, methods and comparisons. Adv Remote Sens 4:147–162

    Article  Google Scholar 

  190. Bhattacharya S, Majumdar TJ, Bhattacharya AK (2006) Generation of DEMs over parts of Antarctica using SEASAT altimeter data and their probable implications in studying ice sheet/glacier movements. Geocarto Int 21(1):27–32

    Article  Google Scholar 

  191. Liu Y, Key J, Mahoney R (2016) Sea and freshwater ice concentration from VIIRS on Suomi NPP and the future JPSS satellites. Remote Sens 8:523

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors sincerely thanks all Directors of IIRS, Dehradun; NRSC Hyderabad; SAC Ahmedabad and Chairman ISRO for providing constant support and encouragement for these research works. Authors also thank all field and support staff during field and office works, especially during winter snow fields and glacier field campaigns in various parts of Himalaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Thakur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, P.K., Garg, V., Nikam, B.R. et al. Cryospheric Studies in Indian Himalayan and Polar Region: Current Status, Advances and Future Prospects of Remote Sensing. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 87, 593–616 (2017). https://doi.org/10.1007/s40010-017-0437-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-017-0437-7

Keywords

Navigation