Skip to main content
Log in

A Novel Mannich Derivative of Protocatechuic Acid: Synthesis, Crystal Structure and Antioxidant Activity

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

A novel Mannich derivative of protocatechuic acid, 3-diethylaminomethyl-4,5-dihydroxy-benzoic acid (PADE), was synthesized for the first time. The structure of PADE was confirmed by infrared spectrum, mass spectrum, and X-ray crystallography. The derivative PADE crystallizes in the monoclinic space group P2(1)/c with cell parameters of a = 8.820(2) Ǻ, b = 11.469(3) Ǻ, c = 14.227(4) Ǻ, β = 107.128(3)°, V = 1375.3(6) Ǻ3 and Z = 4. The average H···A distance is 1.980 Ǻ, which indicates the existence of strong hydrogen bond. The intermolecular and intramolecular hydrogen bonds generate the Mannich derivative PADE into a three-dimensional architecture. The antioxidant activity of PADE was evaluated by scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) and reducing power determination. The results showed that PADE displayed dose-dependency in DPPH radical scavenging and reducing power assays. DPPH radical scavenging activity of PADE (IC50, 1.2 × 10−5 mol/l) was higher than that of protocatechuic acid (5.2 × 10−5 mol/l) and ascorbic acid (2.5 × 10−5 mol/l). The reducing power of PADE was higher than that of ascorbic acid but weaker than that of the raw material protocatechuic acid. The 3D structure of PADE is stabilized by intermolecular and intramolecular hydrogen bonds, which may raise its antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: Therapeutic implications for antioxidant treatment. Drugs Aging 18(9):685–716

    Article  Google Scholar 

  2. Queen BL, Tollefsbol TO (2010) Polyphenols and aging. Curr Aging Sci 3(1):34–42

    Article  Google Scholar 

  3. Kaneto H, Katakami N, Matsuhisa M, T-A Matsuoka (2010) Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediat Inflamm 2010:453892

    Article  Google Scholar 

  4. Kim Y-W, West XZ, Byzova TV (2013) Inflammation and oxidative stress in angiogenesis and vascular disease. J Mol Med 91(3):323–328

    Article  Google Scholar 

  5. Harborne JB (1980) Plant phenolics. In: Bell AE, Charlwood BV (eds) Encyclopedia of plant physiology, vol 8. Secondary plant products. Springer, Berlin, pp 329–402

    Chapter  Google Scholar 

  6. Huang L, Lin CW, Li AY, Wei BY, Teng JW, Li L (2010) Pro-coagulant activity of phenolic acids isolated from Blumea riparia. Nat Prod Commun 5(8):1263–1266

    Google Scholar 

  7. Cai YZ, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74(17):2157–2184

    Article  Google Scholar 

  8. Ghasemzadeh A, Ghasemzadeh N (2011) Flavonoids and phenolic acids: role and biochemical activity in plants and human. J Med Plants Res 5(31):6697–6703

    Google Scholar 

  9. Hadi SM, Asad SF, Singh S, Ahmad A (2000) Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life 50(3):167–171

    Article  Google Scholar 

  10. Shahidi F, Wanasundara PD, Janitha PK (1992) Phenolic antioxidants. Crit Rev Food Sci Nutr 32(1):67–103

    Article  Google Scholar 

  11. Sroka Z, Cisowski W (2003) Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem Toxicol 41(6):753–758

    Article  Google Scholar 

  12. Rice Evans C, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biol Med 20(7):933–956

    Article  Google Scholar 

  13. Wei JR, Liu K, Lin FQ, He CP, Luo X, Zou JJ, He W, Nong WQ, Lin CW (2016) Synthesis, and antioxidant, thrombin-inhibitory, and anticancer activities of hydroxybenzamide derivatives. Appl Biol Chem 59(2):271–281

    Article  Google Scholar 

  14. Jalaja Kumari D (2012) Health benefits of polyphenols and prevention of diseases in humans. Int J Pharm Res Bio-Sci 1(6):166–189

    Google Scholar 

  15. Zhao LG, Chen TQ, Feng DM, Xiao TG, Dang ZL, Feng SL, Xia YY (2014) Structural characterization and antioxidant activity of a heteropolysaccharide isolated from Hedysarum polybotrys. J Asian Nat Prod Res 16(6):677–684

    Article  Google Scholar 

  16. Halder SK, Jana A, Das A, Paul T, Das Mohapatra PK, Pati BR, Mondal KC (2014) Appraisal of antioxidant, anti-hemolytic and DNA shielding potentialities of chitosaccharides produced innovatively from shrimp shell by sequential treatment with immobilized enzymes. Food Chem 158:325–334

    Article  Google Scholar 

  17. Liu Q, Tian G, Yan H, Geng X, Cao Q, Wang H, Ng TB (2014) Characterization of polysaccharides with antioxidant and hepatoprotective activities from the wild edible mushroom Russula vinosa Lindblad. J Agric Food Chem 62(35):8858–8866

    Article  Google Scholar 

  18. Meng FY, Zhu JM, Zhao AR, Yu SR, Lin CW (2012) Synthesis of p-hydroxycinnamic acid derivatives and investigation of fluorescence binding with bovine serum albumin. J Lumin 132(5):1290–1298

    Article  Google Scholar 

  19. Luo X, Du CR, Wei JR, Deng J, Lin YJ, Lin CW (2013) Study of the interaction between sodium salts of (2E)-3-(4′-halophenyl)prop-2-enoyl sulfachloropyrazine and bovine serum albumin by fluorescence spectroscopy. Luminescence 28(2):202–210

    Article  Google Scholar 

  20. Wei JR, He YX, Bei GX, Zou JJ, Liu K, Pan WG, Lin CW (2014) Fluorometric Investigation of the Interaction of (2E)-3-(4′-Halophenyl)-N-{4′′-[(5′′′,6′′′-dimethoxypyrimidin-4′′′-yl)sulfamoyl]phenyl}prop-2-enamides with Bovine Serum Albumin. Proc Natl Acad Sci India Sect A 84(4):505–516

    Article  Google Scholar 

  21. Arend M, Westermann B, Risch N (1998) Modern variants of the Mannich reaction. Angew Chem Int Ed 37(8):1045–1070

    Article  Google Scholar 

  22. Ji JX, Qiu LQ, Yip CW, Chan ASC (2003) A convenient, one-step synthesis of optically active tertiary aminonaphthol and its applications in the highly enantioselective alkenylations of aldehydes. J Org Chem 68(4):1589–1590

    Article  Google Scholar 

  23. Nguyen TB, Wang Q, Gueritte F (2011) An efficient one-step synthesis of piperidin-2-yl and pyrrolidin-2-yl flavonoid alkaloids through phenolic Mannich reactions. Eur J Org Chem 35:7076–7079

    Article  Google Scholar 

  24. Zaugg HE (1984) α-Amidoalkylation at carbon: recent advances—part I. Synthesis 2:85–110

    Article  Google Scholar 

  25. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200

    Article  ADS  Google Scholar 

  26. Oyaizu M (1986) Studies on products of browning reaction: antioxidative activity of products of browning reaction prepared from glucosamine. Japanese J Nutr 44:307–315

    Article  Google Scholar 

  27. Hayat K, Zhang XM, Farooq U, Abbas S, Xia SQ, Jia CS, Zhong F, Zhang J (2010) Effect of microwave treatment on phenolic content and antioxidant activity of citrus mandarin pomace. Food Chem 123(2):423–429

    Article  Google Scholar 

  28. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr Sect A: Found Crystallogr 64(1):112–122

    Article  ADS  Google Scholar 

  29. Zhou XJ, Mei RQ, Zhang L, Lu Q, Zhao J, Adebayo AH, Cheng YX (2010) Antioxidant phenolics from Broussonetia papyrifera fruits. J Asian Nat Prod Res 12(5):399–406

    Article  Google Scholar 

  30. Wang MF, Jin Y, Ho CT (1999) Evaluation of resveratrol derivatives as potential antioxidants and identification of a reaction product of resveratrol and 2,2-diphenyl-1-picryhydrazyl radical. J Agric Food Chem 47(10):3974–3977

    Article  Google Scholar 

  31. Vedernikova I, Proynov E, Salahub D, Haemers A (2000) Local atomic and orbital reactivity indices from density functional calculations for hydrogen-bonded 1,2-dihydroxybenzene. Int J Quantum Chem 77(1):161–173

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Natural Science Foundation of China (21362001), and Natural Science Foundation of Guangxi Province (2013GXNSFDA019005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Liu or Cuiwu Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Liu, K., Du, C. et al. A Novel Mannich Derivative of Protocatechuic Acid: Synthesis, Crystal Structure and Antioxidant Activity. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 87, 181–188 (2017). https://doi.org/10.1007/s40010-017-0356-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-017-0356-7

Keywords

Navigation