Skip to main content

Advertisement

Log in

Oligonucleotide therapeutics and their chemical modification strategies for clinical applications

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

Oligonucleotide therapeutics have emerged as a promising and dynamic class of pharmaceutical agents with remarkable potential for treating a wide spectrum of genetic and acquired diseases. These therapeutic entities, comprising short nucleic acid sequences of either ribonucleic acids (RNA) or deoxyribonucleic acids (DNA), offer the distinct advantage of precise targeting and the ability to interfere with disease-causing genes or proteins. Despite their inherent therapeutic potential, their clinical utility has been hampered by various challenges, including rapid degradation, limited cellular uptake, and unintended immune responses.

Area covered

Chemical modification strategies have been extensively explored to overcome these limitations and enhance their pharmacological properties. In this review, we provide a comprehensive overview of oligonucleotide therapeutics and their associated chemical modification approaches, highlighting their potential in the clinical realm.

Expert opinion

By elucidating the progress made in chemical modifications and their implications for clinical translation, we seek to highlight the pivotal role of these strategies in realizing the full therapeutic potential of oligonucleotide-based therapies for treating a wide range of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aartsma-Rus A, Corey DR (2020) The 10th oligonucleotide therapy approved: golodirsen for Duchenne muscular dystrophy. Nucleic Acid Ther 30:67–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abplanalp WT, Fischer A, John D, Zeiher AM, Gosgnach W, Darville H, Montgomery R, Pestano L, Allée G, Paty I (2020) Efficiency and target derepression of anti-miR-92a: results of a first in human study. Nucleic Acid Ther 30:335–345

    Article  CAS  PubMed  Google Scholar 

  • Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang CC, Ueda M, Kristen AV, Tournev I, Schmidt HH, Coelho T, Berk JL, Lin KP, Vita G, Attarian S, Plante-Bordeneuve V, Mezei MM, Campistol JM, Buades J, Brannagan TH 3rd, Kim BJ, Oh J, Parman Y, Sekijima Y, Hawkins PN, Solomon SD, Polydefkis M, Dyck PJ, Gandhi PJ, Goyal S, Chen J, Strahs AL, Nochur SV, Sweetser MT, Garg PP, Vaishnaw AK, Gollob JA, Suhr OB (2018) Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 379:11–21

    Article  CAS  PubMed  Google Scholar 

  • Akinc A, Querbes W, De S, Qin J, Frank-Kamenetsky M, Jayaprakash KN, Jayaraman M, Rajeev KG, Cantley WL, Dorkin JR, Butler JS, Qin L, Racie T, Sprague A, Fava E, Zeigerer A, Hope MJ, Zerial M, Sah DW, Fitzgerald K, Tracy MA, Manoharan M, Koteliansky V, Fougerolles Ad, Maier MA (2010) Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther 18:1357–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akpulat U, Wang H, Becker K, Contreras A, Partridge TA, Novak JS, Cirak S (2018) Shorter phosphorodiamidate morpholino splice-switching oligonucleotides may increase exon-skipping efficacy in DMD. Mol Ther-Nucleic Acids 13:534–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allerson CR, Sioufi N, Jarres R, Prakash TP, Naik N, Berdeja A, Wanders L, Griffey RH, Swayze EE, Bhat B (2005) Fully 2’-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J Med Chem 48:901–904

    Article  CAS  PubMed  Google Scholar 

  • Amarzguioui M, Holen T, Babaie E, Prydz H (2003) Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 31:589–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anastasiadou E, Seto AG, Beatty X, Hermreck M, Gilles M-E, Stroopinsky D, Pinter-Brown LC, Pestano L, Marchese C, Avigan D, Trivedi P, Escolar DM, Jackson AL, Slack FJ (2021) Cobomarsen, an Oligonucleotide inhibitor of miR-155, slows DLBCL tumor cell growth in vitro and in vivo. Clin Cancer Res 27:1139–1149

    Article  CAS  PubMed  Google Scholar 

  • Anderson BA, Freestone GC, Low A, De-Hoyos CL, Iii WJD, Ostergaard ME, Migawa MT, Fazio M, Wan WB, Berdeja A, Scandalis E, Burel SA, Vickers TA, Crooke ST, Swayze EE, Liang X, Seth PP (2021) Towards next generation antisense oligonucleotides: mesylphosphoramidate modification improves therapeutic index and duration of effect of gapmer antisense oligonucleotides. Nucleic Acids Res 49:9026–9041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki Y, Wood MJA (2021) Emerging oligonucleotide therapeutics for rare neuromuscular diseases. J Neuromuscular Dis 8:869–884

    Article  Google Scholar 

  • Astaneh B, Makhdami N, Astaneh V, Guyatt G (2021) The effect of mipomersen in the management of patients with familial hypercholesterolemia: a systematic review and meta-analysis of clinical trials. J Cardiovasc Dev Dis 8:82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azad RF, Driver VB, Tanaka K, Crooke RM, Anderson KP (1993) Antiviral activity of a phosphorothioate oligonucleotide complementary to RNA of the human cytomegalovirus major immediate-early region. Antimicrob Agents Chemother 37:1945–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, Baskerville S, Maksimova E, Robinson K, Karpilow J, Marshall WS, Khvorova A (2006) 3’ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 3:199–204

    Article  CAS  PubMed  Google Scholar 

  • Braasch DA, Jensen S, Liu Y, Kaur K, Arar K, White MA, Corey DR (2003) RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 42:7967–7975

    Article  CAS  PubMed  Google Scholar 

  • Bramsen JB, Pakula MM, Hansen TB, Bus C, Langkjaer N, Odadzic D, Smicius R, Wengel SL, Chattopadhyaya J, Engels JW, Herdewijn P, Wengel J, Kjems J (2010) A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects. Nucleic Acids Res 38:5761–5773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burdick AD, Sciabola S, Mantena SR, Hollingshead BD, Stanton R, Warneke JA, Zeng M, Martsen E, Medvedev A, Makarov SS, Reed LA, Davis JW 2nd, Whiteley LO (2014) Sequence motifs associated with hepatotoxicity of locked nucleic acid–modified antisense oligonucleotides. Nucleic Acids Res 42:4882–4891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burel SA, Hart CE, Cauntay P, Hsiao J, Machemer T, Katz M, Watt A, Bui HH, Younis H, Sabripour M, Freier SM, Hung G, Dan A, Prakash TP, Seth PP, Swayze EE, Bennett CF, Crooke ST, Henry SP (2016) Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Res 44:2093–2109

    Article  CAS  PubMed  Google Scholar 

  • Bush MS, Hutchins AP, Jones AME, Naldrett MJ, Jarmolowski A, Lloyd CW, Doonan JH (2009) Selective recruitment of proteins to 5′ cap complexes during the growth cycle in Arabidopsis. Plant J 59:400–412

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Farwell MA, Zhang B (2010) MicroRNA as a new player in the cell cycle. J Cell Physiol 225:296–301

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Yang X, Liu M, Zhang Z, Xing E (2021) Roles of miRNA dysregulation in the pathogenesis of multiple myeloma. Cancer Gene Ther 28:1256–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choung S, Kim YJ, Kim S, Park HO, Choi YC (2006) Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem Biophys Res Commun 342:919–927

    Article  CAS  PubMed  Google Scholar 

  • Coelho T, Adams D, Silva A, Lozeron P, Hawkins PN, Mant T, Perez J, Chiesa J, Warrington S, Tranter E, Munisamy M, Falzone R, Harrop J, Cehelsky J, Bettencourt BR, Geissler M, Butler JS, Sehgal A, Meyers RE, Chen Q, Borland T, Hutabarat RM, Clausen VA, Alvarez R, Fitzgerald K, Gamba-Vitalo C, Nochur SV, Vaishnaw AK, Sah DW, Gollob JA, Suhr OB (2013) Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med 369:819–829

    Article  CAS  PubMed  Google Scholar 

  • Collingwood MA, Rose SD, Huang L, Hillier C, Amarzguioui M, Wiiger MT, Soifer HS, Rossi JJ, Behlke MA (2008) Chemical modification patterns compatible with high potency dicer-substrate small interfering RNAs. Oligonucleotides 18:187–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crooke ST, Seth PP, Vickers TA, Liang XH (2020) The interaction of phosphorothioate-containing RNA targeted drugs with proteins is a critical determinant of the therapeutic effects of these agents. J Am Chem Soc 142:14754–14771

    Article  CAS  PubMed  Google Scholar 

  • Crooke ST, Liang XH, Crooke RM, Baker BF, Geary RS (2021) Antisense drug discovery and development technology considered in a pharmacological context. Biochem Pharmacol 189:114196

    Article  CAS  PubMed  Google Scholar 

  • Czauderna F, Fechtner M, Dames S, Aygun H, Klippel A, Pronk GJ, Giese K, Kaufmann J (2003) Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 31:2705–2716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Ambrosio V, Ferraro PM (2022) Lumasiran in the management of patients with primary hyperoxaluria type 1: from bench to bedside. Int J Nephrol Renovasc Dis 15:197–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis S, Propp S, Freier SM, Jones LE, Serra MJ, Kinberger G, Bhat B, Swayze EE, Frank Bennett C, Esau C (2009) Potent inhibition of microRNA in vivo without degradation. Nucleic Acids Res 37:70–77

    Article  CAS  PubMed  Google Scholar 

  • Diener C, Keller A, Meese E (2022) Emerging concepts of miRNA therapeutics: from cells to clinic. Trends Genet 38:613–626

    Article  CAS  PubMed  Google Scholar 

  • Dilliard SA, Siegwart DJ (2023) Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat Rev Mater 8:282–300

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Dowdy SF (2017) Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol 35:222–229

    Article  CAS  PubMed  Google Scholar 

  • Duffy K, Arangundy-Franklin S, Holliger P (2020) Modified nucleic acids: replication, evolution, and next-generation therapeutics. BMC Biol 18:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Echeverri CJ, Beachy PA, Baum B, Boutros M, Buchholz F, Chanda SK, Downward J, Ellenberg J, Fraser AG, Hacohen N, Hahn WC, Jackson AL, Kiger A, Linsley PS, Lum L, Ma Y, Mathey-Prevot B, Root DE, Sabatini DM, Taipale J, Perrimon N, Bernards R (2006) Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods 3:777–779

    Article  CAS  PubMed  Google Scholar 

  • Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjärn M, Hansen HF, Berger U (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452:896–899

    Article  PubMed  ADS  Google Scholar 

  • Esau C, Davis S, Murray SF, Xing Xian Yu, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98

    Article  CAS  PubMed  Google Scholar 

  • Foster DJ, Brown CR, Shaikh S, Trapp C, Schlegel MK, Qian K, Sehgal A, Rajeev KG, Jadhav V, Manoharan M, Kuchimanchi S, Maier MA, Milstein S (2018) Advanced siRNA designs further improve in vivo performance of GalNAc-siRNA conjugates. Mol Ther 26:708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frampton JE (2023) Inclisiran: a review in hypercholesterolemia. Am J Cardiovasc Drugs 23:219–230

    Article  CAS  PubMed  Google Scholar 

  • Freier SM, Altmann KH (1997) The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res 25:4429–4443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallant-Behm CL, Piper J, Dickinson BA, Dalby CM, Pestano LA, Jackson AL (2018) A synthetic microRNA-92a inhibitor (MRG-110) accelerates angiogenesis and wound healing in diabetic and nondiabetic wounds. Wound Repair and Regeneration 26:311–323

    Article  PubMed  Google Scholar 

  • Gao S, Dagnaes-Hansen F, Nielsen EJB, Wengel J, Besenbacher F, Howard KA, Kjems J (2009) The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol Ther 17:1225–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Peng J, Ren Z, He NY, Li Q, Zhao XS, Wang MM, Wen HY, Tang ZH, Jiang ZS, Wang GX, Liu LS (2016) Functional regulatory roles of microRNAs in atherosclerosis. Clin Chim Acta 460:164–171

    Article  CAS  PubMed  Google Scholar 

  • Geary RS, Henry SP, Grillone LR (2002) Fomivirsen: clinical pharmacology and potential drug interactions. Clin Pharmacokinet 41:255–260

    Article  CAS  PubMed  Google Scholar 

  • Grunweller A, Wyszko E, Bieber B, Jahnel R, Erdmann VA, Kurreck J (2003) Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2’-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 31:3185–3193

    Article  PubMed  PubMed Central  Google Scholar 

  • Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524

    Article  CAS  PubMed  Google Scholar 

  • Hamm S, Latz E, Hangel D, Muller T, Yu P, Golenbock D, Sparwasser T, Wagner H, Bauer S (2010) Alternating 2’-O-ribose methylation is a universal approach for generating non-stimulatory siRNA by acting as TLR7 antagonist. Immunobiology 215:559–569

    Article  CAS  PubMed  Google Scholar 

  • Hartford C, Dain B, Sherman S, Zhang Y, Pavani R, Aurand L, Rofail D, Kelly R (2022) Patient-reported outcomes from a phase 2, randomized trial evaluating the safety and efficacy of Pozelimab and Cemdisiran in patients with paroxysmal nocturnal hemoglobinuria. Blood 140:10849–10850

    Article  Google Scholar 

  • Henry S, Stecker K, Brooks D, Monteith D, Conklin B, Frank Bennett C (2000) Chemically modified oligonucleotides exhibit decreased immune stimulation in mice. J Pharmacol Exp Ther 292:468–479

    CAS  PubMed  Google Scholar 

  • Hinnebusch AG (2011) Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiol Mol Biol Rev 75:434–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoerter JA, Walter NG (2007) Chemical modification resolves the asymmetry of siRNA strand degradation in human blood serum. RNA 13:1887–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua Y, Krainer AR (2012) Antisense-mediated exon inclusion. Exon Skipping: Methods and Protocols 867:307–323

    Article  CAS  Google Scholar 

  • Huang Y, Hong J, Zheng S, Ding Yi, Guo S, Zhang H, Zhang X, Quan Du, Liang Z (2011) Elimination pathways of systemically delivered siRNA. Mol Ther 19:381–385

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Taubel J, Casey S, Leung PM, Webb DJ, Desai AS, Cheng YS, Rhyee S, Harrop J, Habtemariam B, Bakris GL (2021) Durable reductions in circulating angiotensinogen and blood pressure six months after single doses of ALN-AGT, an RNA interference therapeutic targeting hepatic angiotensinogen synthesis, in hypertensive patients. Circulation. https://doi.org/10.1161/circ.144.suppl_1.10974

    Article  PubMed  PubMed Central  Google Scholar 

  • Hudziak RM, Barofsky E, Barofsky DF, Doreen l Weller, Sung-Ben Huang, and Dwight D Weller. (1996) Resistance of morpholino phosphorodiamidate oligomers to enzymatic degradation. Antisense Nucleic Acid Drug Develop 6:267–272

    Article  CAS  Google Scholar 

  • Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838

    Article  CAS  PubMed  Google Scholar 

  • Hwang J, Chang C, Kim JH, Oh CT, Lee HN, Lee C, Oh D, Lee C, Kim B, Hong SW, Lee DK (2016) Development of cell-penetrating asymmetric interfering RNA targeting connective tissue growth factor. J Invest Dermatol 136:2305–2313

    Article  CAS  PubMed  Google Scholar 

  • Hyjek-Skladanowska M, Vickers TA, Napiorkowska A, Anderson BA, Tanowitz M, Crooke ST, Liang XH, Seth PP, Nowotny M (2020) Origins of the increased affinity of phosphorothioate-modified therapeutic nucleic acids for proteins. J Am Chem Soc 142:7456–7468

    Article  CAS  PubMed  Google Scholar 

  • Jackson AL, Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discovery 9:57–67

    Article  CAS  PubMed  Google Scholar 

  • Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, Linsley PS (2006) Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12:1179–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janas MM, Schlegel MK, Harbison CE, Yilmaz VO, Jiang Y, Parmar R, Zlatev I, Castoreno A, Xu H, Shulga-Morskaya S, Rajeev KG, Manoharan M, Keirstead ND, Maier MA, Jadhav V (2018) Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity. Nat Commun 9:723

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Jang B, Jang H, Kim H, Kim M, Jeong M, Lee GS, Lee K, Lee H (2022) Protein-RNA interaction guided chemical modification of Dicer substrate RNA nanostructures for superior in vivo gene silencing. J Control Release 343:57–65

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman M, Ansell SM, Mui BL, Tam YK, Chen J, Du X, Butler D, Eltepu L, Matsuda S, Narayanannair JK, Rajeev KG, Hafez IM, Akinc A, Maier MA, Tracy MA, Cullis PR, Madden TD, Manoharan M, Hope MJ (2012) Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Ed Engl 51:8529–8533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23:457–462

    Article  CAS  PubMed  Google Scholar 

  • Judge AD, Bola G, Lee AC, MacLachlan I (2006) Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther 13:494–505

    Article  CAS  PubMed  Google Scholar 

  • Judge DP, Kristen AV, Grogan M, Maurer MS, Falk RH, Hanna M, Gillmore J, Garg P, Vaishnaw AK, Harrop J, Powell C, Karsten V, Zhang X, Sweetser MT, Vest J, Hawkins PN (2020) Phase 3 multicenter study of revusiran in patients with hereditary transthyretin-mediated (hATTR) Amyloidosis with Cardiomyopathy (ENDEAVOUR). Cardiovasc Drugs Ther 34:357–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakiuchi-Kiyota S, Whiteley LO, Ryan AM, Mathialagan N (2016) Development of a method for profiling protein interactions with LNA-modified antisense oligonucleotides using protein microarrays. Nucleic Acid Ther 26:93–101

    Article  CAS  PubMed  Google Scholar 

  • Kang H, Ping-Jung Chou W, Curtis Johnson JR, Weller D, Huang S-B, Summerton JE (1992) Stacking interactions of ApA analogues with modified backbones. Biopolymers 32:1351–1363

    Article  CAS  PubMed  Google Scholar 

  • Karikó K, Bhuyan P, Capodici J, Weissman D (2004) Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol 172:6545–6549

    Article  PubMed  Google Scholar 

  • Kasuya T, Hori S, Watanabe A, Nakajima M, Gahara Y, Rokushima M, Yanagimoto T, Kugimiya A (2016) Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides. Sci Rep 6:30377

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Keam SJ (2022) Vutrisiran: First approval. Drugs 82:1419–1425

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23:222–226

    Article  CAS  PubMed  Google Scholar 

  • Kim KK, Ham J, Chi SW (2013) miRTCat: a comprehensive map of human and mouse microRNA target sites including non-canonical nucleation bulges. Bioinformatics 29:1898–1899

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Jang B, Lee D, Kwon SC, Lee H (2022) Artificial primary-miRNAs as a platform for simultaneous delivery of siRNA and antisense oligonucleotide for multimodal gene regulation. J Control Release 349:983–991

    Article  CAS  PubMed  Google Scholar 

  • Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs.’ Nature 438:685–689

    Article  PubMed  ADS  Google Scholar 

  • Krützfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T, Manoharan M, Stoffel M (2007) Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res 35:2885–2892

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuciński J, Chamera S, Aleksandra Kmera M, Rowley J, Fujii S, Khurana P, Nowotny M, Wierzbicki AT (2020) Evolutionary history and activity of RNase H1-like proteins in Arabidopsis thaliana. Plant Cell Physiol 61:1107–1119

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunze-Schumacher H, Krueger A (2020) The Role of MicroRNAs in development and function of regulatory T cells - lessons for a better understanding of MicroRNA biology. Front Immunol 11:2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurreck J (2003) Antisense technologies: improvement through novel chemical modifications. Eur J Biochem 270:1628–1644

    Article  CAS  PubMed  Google Scholar 

  • Kurreck J, Wyszko E, Gillen C, Erdmann VA (2002) Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res 30:1911–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LA Janssen H, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, Van Der Meer AJ, Patick AK, Chen A, Zhou Yi (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368:1685–1694

    Article  CAS  PubMed  Google Scholar 

  • Lamb YN (2021) Inclisiran: First Approval. Drugs 81:389–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S, Ørum H (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201

    Article  CAS  PubMed  ADS  Google Scholar 

  • Layzer JM, McCaffrey AP, Tanner AK, Huang Z, Kay MA, Sullenger BA (2004a) In vivo activity of nuclease-resistant siRNAs. RNA 10:766–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HY, Doudna JA (2012) TRBP alters human precursor microRNA processing in vitro. RNA 18:2012–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  CAS  PubMed  ADS  Google Scholar 

  • Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HS, Seok H, Lee DH, Ham J, Lee W, Youm EM, Yoo JS, Lee YS, Jang ES, Chi SW (2015a) Abasic pivot substitution harnesses target specificity of RNA interference. Nat Commun 6:10154

    Article  CAS  PubMed  ADS  Google Scholar 

  • Lee HY, Han SS, Rhee H, Park JH, Lee JS, Oh YM, Choi SS, Shin SH, Kim WJ (2015b) Differential expression of microRNAs and their target genes in non-small-cell lung cancer. Mol Med Rep 11:2034–2040

    Article  CAS  PubMed  Google Scholar 

  • Lee EC, Valencia T, Allerson C, Schairer A, Flaten A, Yheskel M, Kersjes K, Li J, Gatto S, Takhar M (2019) Discovery and preclinical evaluation of anti-miR-17 oligonucleotide RGLS4326 for the treatment of polycystic kidney disease. Nat Commun 10:4148

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Lennox KA, Behlke MA (2010) A direct comparison of anti-microRNA oligonucleotide potency. Pharm Res 27:1788–1799

    Article  CAS  PubMed  Google Scholar 

  • Leuschner PJ, Ameres SL, Kueng S, Martinez J (2006) Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep 7:314–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  • Liang XH, Sun H, Shen W, Crooke ST (2015) Identification and characterization of intracellular proteins that bind oligonucleotides with phosphorothioate linkages. Nucleic Acids Res 43:2927–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  CAS  PubMed  ADS  Google Scholar 

  • Liu A, Zhao J, Shah M, Migliorati JM, Tawfik SM, Bahal R, Rasmussen TP, Manautou JE, Zhong XB (2022) ’Nedosiran, a Candidate siRNA drug for the treatment of primary hyperoxaluria: design development, and clinical studies. ACS Pharmacol Transl Sci 5:1007–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ly S, Echeverria D, Sousa J, Khvorova A (2020) Single-stranded phosphorothioated regions enhance cellular uptake of cholesterol-conjugated siRNA but not silencing efficacy. Mol Ther Nucleic Acids 21:991–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majlessi M, Nelson NC, Becker MM (1998) Advantages of 2’-O-methyl oligoribonucleotide probes for detecting RNA targets. Nucleic Acids Res 26:2224–2229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manoharan M (1999) 2’-carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation. Biochim Biophys Acta 1489:117–130

    Article  CAS  PubMed  Google Scholar 

  • Manoharan M, Akinc A, Pandey RK, Qin J, Hadwiger P, John M, Mills K, Charisse K, Maier MA, Nechev L, Greene EM, Pallan PS, Rozners E, Rajeev KG, Egli M (2011) Unique gene-silencing and structural properties of 2’-fluoro-modified siRNAs. Angew Chem Int Ed Engl 50:2284–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGowan MP, Tardif JC, Ceska R, Burgess LJ, Soran H, Gouni-Berthold I, Wagener G, Chasan-Taber S (2012) Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS ONE 7:e49006

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    Article  CAS  PubMed  Google Scholar 

  • Miroshnichenko SK, Patutina OA, Burakova EA, Chelobanov BP, Fokina AA, Vlassov VV, Altman S, Zenkova MA, Stetsenko DA (2019) Mesyl phosphoramidate antisense oligonucleotides as an alternative to phosphorothioates with improved biochemical and biological properties. Proc Natl Acad Sci U S A 116:1229–1234

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Monia BP (1997) First- and second-generation antisense inhibitors targeted to human c-raf kinase: in vitro and in vivo studies. Anticancer Drug Des 12:327–339

    CAS  PubMed  Google Scholar 

  • Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, Hartsough K, Machemer L, Radka S, Jadhav V, Vaish N, Zinnen S, Vargeese C, Bowman K, Shaffer CS, Jeffs LB, Judge A, MacLachlan I, Polisky B (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23:1002–1007

    Article  CAS  PubMed  Google Scholar 

  • Moulds C, Lewis JG, Froehler BC, Grant D, Huang T, Milligan JF, Matteucci MD, Wagner RW (1995) Site and mechanism of antisense inhibition by C-5 propyne oligonucleotides. Biochemistry 34:5044–5053

    Article  CAS  PubMed  Google Scholar 

  • Nair JK, Willoughby JL, Chan A, Charisse K, Alam MR, Wang Q, Hoekstra M, Kandasamy P, Kel’in AV, Milstein S, Taneja N, O’Shea J, Shaikh S, Zhang L, van der Sluis RJ, Jung ME, Akinc A, Hutabarat R, Kuchimanchi S, Fitzgerald K, Zimmermann T, van Berkel TJ, Maier MA, Rajeev KG, Manoharan M (2014) Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc 136:16958–16961

    Article  CAS  PubMed  Google Scholar 

  • Nair JK, Attarwala H, Sehgal A, Wang Q, Aluri K, Zhang X, Gao M, Liu J, Indrakanti R, Schofield S, Kretschmer P, Brown CR, Gupta S, Willoughby JLS, Boshar JA, Jadhav V, Charisse K, Zimmermann T, Fitzgerald K, Manoharan M, Rajeev KG, Akinc A, Hutabarat R, Maier MA (2017a) Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates. Nucleic Acids Res 45:10969–10977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair JK, Attarwala H, Sehgal A, Wang Q, Aluri K, Zhang X, Minggeng Gao Ju, Liu RI, Schofield S, Kretschmer P, Brown CR, Gupta S, Willoughby JLS, Boshar JA, Jadhav V, Charisse K, Zimmermann T, Fitzgerald K, Manoharan M, Rajeev KG, Akinc A, Hutabarat R, Maier MA (2017b) Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc–siRNA conjugates. Nucleic Acids Res 45:10969–10977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neilson JR, Zheng GX, Burge CB, Sharp PA (2007) Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 21:578–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Ruse C, Cexiong Fu, Lindow M, Stenvang J, Straarup EM (2011) Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet 43:371–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donoghue ML, Rosenson RS, Gencer B, Lopez JAG, Lepor NE, Baum SJ, Stout E, Gaudet D, Knusel B, Kuder JF, Ran X, Murphy SA, Wang H, Wu Y, Kassahun H, Sabatine MS, Investigators O-D (2022) Small Interfering RNA to Reduce Lipoprotein(a) in Cardiovascular Disease. N Engl J Med 387:1855–1864

    Article  CAS  PubMed  Google Scholar 

  • Ottesen EW (2017) ISS-N1 makes the first FDA-approved drug for spinal muscular atrophy. Transl Neurosci 8:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottosen S, Parsley TB, Yang Lu, Zeh K, van Doorn L-J, van der Veer E, Raney AK, Hodges MR, Patick AK (2015) In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122. Antimicrob Agents Chemother 59:599–608

    Article  PubMed  Google Scholar 

  • Peddi, V., L. Ratner, M. Cooper, O. Gaber, S. Feng, P. Tso, V. Bowers, R. Naraghi, K. Budde, M. Polinsky, E. Squiers, S. Erlich, and Study Investigators Grp (2014) Treatment with QPI-1002, a Short Interfering (SI) RNA for the Prophylaxis of Delayed Graft Function. Transplantation 98:153–253

    Article  Google Scholar 

  • Prakash TP, Allerson CR, Dande P, Vickers TA, Sioufi N, Jarres R, Baker BF, Swayze EE, Griffey RH, Bhat B (2005) Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J Med Chem 48:4247–4253

    Article  CAS  PubMed  Google Scholar 

  • Pramono ZA, Dwi YT, Alimsardjono H, Ishii A, Takeda S-I, Matsuo M (1996) Induction of exon skipping of the dystrophin transcript in lymphoblastoid cells by transfecting an antisense oligodeoxynucleotide complementary to an exon recognition sequence. Biochem Biophys Res Commun 226:445–449

    Article  CAS  PubMed  Google Scholar 

  • Rand TA, Petersen S, Du F, Wang X (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123:621–629

    Article  CAS  PubMed  Google Scholar 

  • Ribrag V, Lee ST, Rizzieri D, Dyer MJS, Fayad L, Kurzrock R, Andritsos L, Bouabdallah R, Hayat A, Bacon L, Jiang Y, Miah K, Delafont B, Hamid O, Anyanwu S, Martinez P, Hess B (2021) A Phase 1b Study to Evaluate the Safety and Efficacy of Durvalumab in Combination With Tremelimumab or Danvatirsen in Patients With Relapsed or Refractory Diffuse Large B-Cell Lymphoma. Clin Lymphoma Myeloma Leuk 21(309–17):e3

    Google Scholar 

  • Ricci A, Ventura P (2022) Givosiran for the treatment of acute hepatic porphyria. Expert Rev Clin Pharmacol 15:383–393

    Article  CAS  PubMed  Google Scholar 

  • Roberts TC, Langer R, Wood MJA (2020) Advances in oligonucleotide drug delivery. Nat Rev Drug Discovery 19:673–694

    Article  CAS  PubMed  Google Scholar 

  • Rooij V, Eva, and Sakari Kauppinen. (2014) Development of micro RNA therapeutics is coming of age. EMBO Mol Med 6:851–864

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlegel MK, Foster DJ, Kel’in AV, Zlatev I, Bisbe A, Jayaraman M, Lackey JG, Rajeev KG, Charisse K, Harp J, Pallan PS, Maier MA, Egli M, Manoharan M (2017) Chirality Dependent Potency Enhancement and Structural Impact of Glycol Nucleic Acid Modification on siRNA. J Am Chem Soc 139:8537–8546

    Article  CAS  PubMed  Google Scholar 

  • Schlegel MK, Janas MM, Jiang Y, Barry JD, Davis W, Agarwal S, Berman D, Brown CR, Castoreno A, LeBlanc S, Liebow A, Mayo T, Milstein S, Nguyen T, Shulga-Morskaya S, Hyde S, Schofield S, Szeto J, Woods LB, Yilmaz VO, Manoharan M, Egli M, Charisse K, Sepp-Lorenzino L, Haslett P, Fitzgerald K, Jadhav V, Maier MA (2022) From bench to bedside: Improving the clinical safety of GalNAc-siRNA conjugates using seed-pairing destabilization. Nucleic Acids Res 50:6656–6670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott LJ (2020) Givosiran: First Approval. Drugs 80:335–339

    Article  PubMed  Google Scholar 

  • Scott LJ, Keam SJ (2021) Lumasiran: First Approval. Drugs 81:277–282

    Article  CAS  PubMed  Google Scholar 

  • Seth PP, Siwkowski A, Allerson CR, Vasquez G, Lee S, Prakash TP, Wancewicz EV, Witchell D, Swayze EE (2009) Short antisense oligonucleotides with novel 2’-4’ conformationaly restricted nucleoside analogues show improved potency without increased toxicity in animals. J Med Chem 52:10–13

    Article  CAS  PubMed  Google Scholar 

  • Seto AG, Beatty X, Lynch JM, Hermreck M, Tetzlaff M, Duvic M, Jackson AL (2018) Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br J Haematol 183:428–444

    Article  CAS  PubMed  Google Scholar 

  • Shadid M, Badawi M, Abulrob A (2021) Antisense oligonucleotides: absorption, distribution, metabolism, and excretion. Expert Opin Drug Metab Toxicol 17:1281–1292

    Article  CAS  PubMed  Google Scholar 

  • Sheikh O, Yokota T (2022) Pharmacology and toxicology of eteplirsen and SRP-5051 for DMD exon 51 skipping: An update. Arch Toxicol 96:1–9

    Article  CAS  PubMed  Google Scholar 

  • Shen W, De Hoyos CL, Sun H, Vickers TA, Liang XH, Crooke ST (2018) Acute hepatotoxicity of 2’ fluoro-modified 5–10-5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins. Nucleic Acids Res 46:2204–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen W, De Hoyos CL, Migawa MT et al (2019) Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Nat Biotechnol 37:640–650

    Article  CAS  PubMed  Google Scholar 

  • Sheng L, Frank Rigo C, Bennett F, Krainer AR, Hua Y (2020) Comparison of the efficacy of MOE and PMO modifications of systemic antisense oligonucleotides in a severe SMA mouse model. Nucleic Acids Res 48:2853–2865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin M, Chan IL, Cao Y, Gruntman AM, Lee J, Sousa J, Rodriguez TC, Echeverria D, Devi G, Debacker AJ, Moazami MP, Krishnamurthy PM, Rembetsy-Brown JM, Kelly K, Yukselen O, Donnard E, Parsons TJ, Khvorova A, Sontheimer EJ, Maehr R, Garber M, Watts JK (2022) Intratracheally administered LNA gapmer antisense oligonucleotides induce robust gene silencing in mouse lung fibroblasts. Nucleic Acids Res 50:8418–8430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, Ravindra N, and Natalia N Singh. 2018. 'Mechanism of splicing regulation of spinal muscular atrophy genes', RNA Metabolism in Neurodegenerative Diseases: 31–61.

  • Siva K, Covello G, Denti MA (2014) Exon-skipping antisense oligonucleotides to correct missplicing in neurogenetic diseases. Nucleic Acid Ther 24:69–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snead NM, Wu X, Li A, Cui Q, Sakurai K, Burnett JC, Rossi JJ (2013) Molecular basis for improved gene silencing by Dicer substrate interfering RNA compared with other siRNA variants. Nucleic Acids Res 41:6209–6221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solano EC, Kornbrust DJ, Beaudry A, Foy JW, Schneider DJ, Thompson JD (2014) Toxicological and pharmacokinetic properties of QPI-1007, a chemically modified synthetic siRNA targeting caspase 2 mRNA, following intravitreal injection. Nucleic Acid Ther 24:258–266

    Article  CAS  PubMed  Google Scholar 

  • Song X, Wang X, Ma Y, Liang Z, Yang Z, Cao H (2017) Site-Specific Modification Using the 2’-Methoxyethyl Group Improves the Specificity and Activity of siRNAs. Mol Ther Nucleic Acids 9:242–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sontheimer EJ (2005) Assembly and function of RNA silencing complexes. Nat Rev Mol Cell Biol 6:127–138

    Article  CAS  PubMed  Google Scholar 

  • Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Rohl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178

    Article  CAS  PubMed  ADS  Google Scholar 

  • Srivastava A, Rangarajan S, Kavakli K, Klamroth R, Kenet G, Khoo L, You CW, Xu WQ, Malan N, Frenzel L, Bagot CN, Stasyshyn O, Chang CY, Poloskey S, Qiu ZY, Andersson S, Mei BS, Pipe SW (2023) Fitusiran prophylaxis in people with severe haemophilia A or haemophilia B without inhibitors (ATLAS-A/B): a multicentre, open-label, randomised, phase 3 trial. Lancet Haematology 10:E322–E332

    Article  CAS  PubMed  Google Scholar 

  • Sully EK, Geller BL, Li L, Moody CM, Bailey SM, Moore AL, Wong M, Nordmann P, Daly SM, Sturge CR (2017) Peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) restores carbapenem susceptibility to NDM-1-positive pathogens in vitro and in vivo. J Antimicrob Chemother 72:782–790

    CAS  PubMed  Google Scholar 

  • Summerton J, Weller D (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7:187–195

    Article  CAS  PubMed  Google Scholar 

  • Swayze EE, Siwkowski AM, Wancewicz EV, Migawa MT, Wyrzykiewicz TK, Hung G, Monia BP, Bennett CF (2007) Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res 35:687–700

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka, Takami, Hirofumi Komaki, Yasuko Asahina, Harumasa Nakamura, Norio Motohashi, Eri Takeshita, Yuko Shimizu‐Motohashi, Akihiko Ishiyama, Chihiro Yonee, and Shinsuke Maruyama. 2023. 'Systemic administration of the antisense oligonucleotide NS‐089/NCNP‐02 for skipping of exon 44 in patients with Duchenne muscular dystrophy: Study protocol for a phase I/II clinical trial', Neuropsychopharmacology reports.

  • Täubel J, Hauke W, Rump S, Viereck J, Batkai S, Poetzsch J, Rode L, Weigt H, Genschel C, Lorch U, Theek C, Levin AA, Bauersachs J, Solomon SD, Thum T (2020) Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. Eur Heart J 42:178–188

    Article  PubMed Central  Google Scholar 

  • Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455:1124–1128

    Article  CAS  PubMed  ADS  Google Scholar 

  • Taylor DW, Ma E, Shigematsu H, Cianfrocco MA, Noland CL, Nagayama K, Nogales E, Doudna JA, Wang HW (2013) Substrate-specific structural rearrangements of human Dicer. Nat Struct Mol Biol 20:662–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thielmann M, Corteville D, Szabo G, Swaminathan M, Lamy A, Lehner LJ, Brown CD, Noiseux N, Atta MG, Squiers EC, Erlich S, Rothenstein D, Molitoris B, Mazer CD (2021) Teprasiran, a small interfering RNA, for the prevention of acute kidney injury in high-risk patients undergoing cardiac surgery: a randomized clinical study. Circulation 144:1133–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth AT, Cho DC (2020) Emerging therapies for advanced clear cell renal cell carcinoma. J Kidney Cancer VHL 7:17–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsoumpra MK, Fukumoto S, Matsumoto T, Takeda S, Wood MJA, Aoki Y (2019) Peptide-conjugate antisense based splice-correction for Duchenne muscular dystrophy and other neuromuscular diseases. EBioMedicine 45:630–645

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Wal E, Bergsma AJ, Pijnenburg JM, van der Ploeg AT, Pim WWM, Pijnappel. (2017) Antisense oligonucleotides promote exon inclusion and correct the common c.-32-13T> G GAA splicing variant in Pompe disease. Molecular Therapy-Nucleic Acids 7:90–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Vester B, Wengel J (2004) LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 43:13233–13241

    Article  CAS  PubMed  Google Scholar 

  • Vickers TA, Crooke ST (2015) The rates of the major steps in the molecular mechanism of RNase H1-dependent antisense oligonucleotide induced degradation of RNA. Nucleic Acids Res 43:8955–8963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vienberg S, Geiger J, Madsen S, Dalgaard LT (2017) MicroRNAs in metabolism. Acta Physiol 219:346–361

    Article  CAS  Google Scholar 

  • Weng Y, Xiao H, Zhang J, Liang XJ, Huang Y (2019) RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv 37:801–825

    Article  CAS  PubMed  Google Scholar 

  • Wilson RC, Tambe A, Kidwell MA, Noland CL, Schneider CP, Doudna JA (2015) Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol Cell 57:397–407

    Article  CAS  PubMed  Google Scholar 

  • Wong SC, Cheng W, Hamilton H, Nicholas AL, Wakefield DH, Almeida A, Blokhin AV, Carlson J, Neal ZC, Subbotin V, Zhang G, Hegge J, Bertin S, Trubetskoy VS, Rozema DB, Lewis DL, Kanner SB (2018) HIF2alpha-targeted RNAi therapeutic inhibits clear cell renal cell carcinoma. Mol Cancer Ther 17:140–149

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Lima WF, Zhang H, Fan A, Sun H, Crooke ST (2004) Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem 279:17181–17189

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Sun H, Liang X, Lima WF, Crooke ST (2013) Human RNase H1 is associated with protein P32 and is involved in mitochondrial pre-rRNA processing. PLoS ONE 8:e71006

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Wu X, Wu T, Liu J, Ding B (2020) Gene therapy based on nucleic acid nanostructure. Adv Healthc Mater 9:e2001046

    Article  PubMed  Google Scholar 

  • Wurster, Claudia D, and Albert C Ludolph. 2018. "Nusinersen for spinal muscular atrophy." In, 1756285618754459. SAGE Publications Sage UK: London, England.

  • Yamamoto T, Mukai Y, Wada F, Terada C, Kayaba Y, Kaho Oh, Yamayoshi A, Obika S, Harada-Shiba M (2021) Highly potent GalNAc-conjugated tiny LNA anti-miRNA-122 antisense oligonucleotides. Pharmaceutics 13:817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanai H, Chiba S, Ban T, Nakaima Y, Onoe T, Honda K, Ohdan H, Taniguchi T (2011) Suppression of immune responses by nonimmunogenic oligodeoxynucleotides with high affinity for high-mobility group box proteins (HMGBs). Proc Natl Acad Sci U S A 108:11542–11547

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Yazbeck DR, Min KL, Damha MJ (2002) Molecular requirements for degradation of a modified sense RNA strand by Escherichia coli ribonuclease H1. Nucleic Acids Res 30:3015–3025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeang C, Karwatowska-Prokopczuk E, Su F, Dinh B, Xia S, Witztum JL, Tsimikas S (2022) Effect of pelacarsen on Lipoprotein(a) cholesterol and corrected low-density lipoprotein cholesterol. J Am Coll Cardiol 79:1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Xiong G, Guo S, Xu C, Xu R, Guo P, Shu D (2019) Delivery of Anti-miRNA for triple-negative breast cancer therapy using RNA nanoparticles targeting stem cell marker CD133. Mol Ther 27:1252–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J, Zhang L, Zhang J, Wang X, Ye K, Xi Z, Du Q, Liang Z (2013) Single modification at position 14 of siRNA strand abolishes its gene-silencing activity by decreasing both RISC loading and target degradation. FASEB J 27:4017–4026

    Article  CAS  PubMed  Google Scholar 

  • Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, Cai L (2018) miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 39:1073–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann TS, Karsten V, Chan A, Chiesa J, Boyce M, Bettencourt BR, Hutabarat R, Nochur S, Vaishnaw A, Gollob J (2017) Clinical proof of concept for a novel hepatocyte-targeting GalNAc-siRNA conjugate. Mol Ther 25:71–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (No. 2018R1A5A2025286, 2022M3E5F1081328, RS-2023-00261343), the Ministry of Science & ICT (No. 2022M3A9H1014125), and the Korean government (Ministry of Food and Drug Safety) (No. 22203MFDS405).

Funding

Korea Health Industry Development Institute,22203MFDS405, Hyukjin Lee, National Research Foundation(NRF), 2018R1A5A2025286, Hyukjin Lee, 2022M3E5F1081328, Hyukjin Lee,National Research Foundation (NRF), RS-2023-00261343, Hyukjin Lee, 2022M3A9H1014125, Hyukjin Lee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyukjin Lee.

Ethics declarations

Conflict of interest

The authors (Hyunsook Kim, Sujeong Kim, Dayoung Lee, Dahye Lee, Jiyeon Yoon, and Hyukjin Lee) declare that they have no conflict of interest.

Research involving human or animal participants

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Kim, S., Lee, D. et al. Oligonucleotide therapeutics and their chemical modification strategies for clinical applications. J. Pharm. Investig. (2024). https://doi.org/10.1007/s40005-024-00669-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40005-024-00669-8

Keywords

Navigation