Skip to main content
Log in

In vitro–in vivo correlation of microsphere formulations: recent advances and challenges

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

Microsphere formulations prepared using biodegradable polymers are among the most common strategies used for controlled-release drug delivery. These formulations can be loaded with a wide array of drugs, including chemicals and peptides, enabling prolonged release periods. However, establishing a standardized release profile for microsphere formulations is challenging because of their complexity and diversity. For this reason, there is no official method for in vitro–in vivo correlation (IVIVC) of microspheres.

Area covered

This review outlines a method for developing IVIVC of microsphere formulations based on the United States Food and Drug Administration guidance for extended-release oral dosage forms. It briefly provides definitions and summarizes each stage of the method. In addition, we discuss the findings of recent studies on obstacles and influencing factors in developing IVIVC of microspheres.

Expert opinion

IVIVC is an effective model for quality control during manufacturing and an indicator of in vivo performance. Ultimately, it can serve as a surrogate for costly and time-consuming human bioequivalence studies. The IVIVC of microspheres has become an important concern as the microsphere drug market grows. This review provides a plethora of examples for microsphere IVIVC to enhance predictability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexis F (2005) Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)]. Polym Int 54:36–46

    Article  CAS  Google Scholar 

  • Allison SD (2008) Effect of structural relaxation on the preparation and drug release behavior of poly(lactic-co-glycolic)acid microparticle drug delivery systems. J Pharm Sci 97(6):2022–2035

    Article  CAS  PubMed  Google Scholar 

  • Amatya S, Park EJ, Park JH, Kim JS, Seol E et al (2013) Drug release testing methods of polymeric particulate drug formulations. J Pharm Investig 43:259–266

    Article  CAS  Google Scholar 

  • Andhariya JV, Burgess DJ (2016) Recent advances in testing of microsphere drug delivery systems. Expert Opin Drug Deliv 13(4):593–608

    Article  CAS  PubMed  Google Scholar 

  • Andhariya JV, Shen J, Choi S, Wang Y, Zou Y, Burgess DJ (2017) Development of in vitro-in vivo correlation of parenteral naltrexone loaded polymeric microspheres. J Control Release 255:27–35

    Article  CAS  PubMed  Google Scholar 

  • Andhariya JV, Jog R, Shen J, Choi S, Wang Y, Zou Y, Burgess DJ (2019a) Development of Level A in vitro-in vivo correlations for peptide loaded PLGA microspheres. J Control Release 308:1–13

    Article  CAS  PubMed  Google Scholar 

  • Andhariya JV, Jog R, Shen J, Choi S, Wang Y, Zou Y, Burgess DJ (2019b) In vitro-in vivo correlation of parenteral PLGA microspheres: Effect of variable burst release. J Control Release 314:25–37

    Article  CAS  PubMed  Google Scholar 

  • Bao Q, Wang X, Wan B, Zou Y, Wang Y, Burgess DJ (2023) Development of in vitro-in vivo correlations for long-acting injectable suspensions. Int J Pharm 634:122642

    Article  CAS  PubMed  Google Scholar 

  • Blasi P (2019) Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: an overview. J Pharm Investig 49:337–346

    Article  CAS  Google Scholar 

  • Buchwald P (2003) Direct, differential-equation-based in-vitro-in-vivo correlation (IVIVC) method. J Pharm Pharmacol 55(4):495–504

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Palazzo A, Hennink WE, Kok RJ (2017) Effect of particle size on drug loading and release kinetics of gefitinib-loaded PLGA microspheres. Mol Pharm 14(2):459–467

    Article  CAS  PubMed  Google Scholar 

  • Chu DF, Fu XQ, Liu WH, Liu K, Li YX (2006) Pharmacokinetics and in vitro and in vivo correlation of huperzine A loaded poly(lactic-co-glycolic acid) microspheres in dogs. Int J Pharm 325:116–123

    Article  CAS  PubMed  Google Scholar 

  • D’Souza SS, DeLuca PP (2006) Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm Res 23(3):460–474

    Article  PubMed  Google Scholar 

  • D’Souza S, Faraj JA, Giovagnoli S, DeLuca PP (2014a) In vitro-in vivo correlation from lactide-co-glycolide polymeric dosage forms. Prog Biomater 3:131–142

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Souza S, Faraj JA, Giovagnoli S, Deluca PP (2014b) IVIVC from long acting olanzapine microspheres. Int J Biomater 2014:407065

  • Emami F, Mostafavi Yazdi SJ, Na DH (2019) Poly(lactic acid)/poly(lactic-co-glycolic acid) particulate carriers for pulmonary drug delivery. J Pharm Investig 49:427–442

    Article  CAS  Google Scholar 

  • Faisant N, Siepmann J, Benoit JP (2002) PLGA-based microparticles: elucidation of mechanisms and a new, simple mathematical model quantifying drug release. Eur J Pharm Sci 15(4):355–366

    Article  CAS  PubMed  Google Scholar 

  • Food and Drug Administration (1997) Guidance for Industry: extended release oral dosage forms: development, evaluation and application of in Vitro/In vivo correlations. Food and Drug Administration, Rockville, MD, USA

  • Frank A, Rath SK, Venkatraman SS (2005) Controlled release from bioerodible polymers: effect of drug type and polymer composition. J Control Release 102(2):333–344

    Article  CAS  PubMed  Google Scholar 

  • Giles MB, Hong JKY, Liu Y, Tang J, Li T, Beig A, Schwendeman A, Schwendeman SP (2022) Efficient aqueous remote loading of peptides in poly(lactic-co-glycolic acid). Nat Commun 13(1):3282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goel M, Leung D, Famili A, Chang D, Nayak P, Al-Sayah M (2021) Accelerated in vitro release testing method for a long-acting peptide-PLGA formulation. Eur J Pharm Biopharm 165:185–192

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Zhang J, Tang X, Li M, Ma S, Liu C, Gao Y, Zhang Y, Liu Y, Yu F, Yang Y, Guo J, Li Z, Mei X (2018) An Accelerated Release Method of Risperidone Loaded PLGA microspheres with Good IVIVC. Curr Drug Deliv 15(1):87–96

    Article  CAS  PubMed  Google Scholar 

  • Jiang G, Woo BH, Kang F, Singh J, DeLuca PP (2002) Assessment of protein release kinetics, stability and protein polymer interaction of lysozyme encapsulated poly(D,L-lactide-co-glycolide) microspheres. J Control Release 79:137–145.

  • Jiang Y, Wang F, Xu H, Liu H, Meng Q, Liu W (2014) Development of andrographolide loaded PLGA microspheres: optimization, characterization and in vitro-in vivo correlation. Int J Pharm 475:475–484

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Park EJ, Kim TW, Na DH (2021) Recent progress in drug release testing methods of biopolymeric particulate system. Pharmaceutics 13(8):1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostanski JW, Dani BA, Reynolds GA, Bowers CY, DeLuca PP (2000) Evaluation of Orntide microspheres in a rat animal model and correlation to in vitro release profiles. AAPS PharmSciTech 1(4):E27

    Article  CAS  PubMed  Google Scholar 

  • Larsen C, Larsen SW, Jensen H, Yaghmur A, Ostergaard J (2009) Role of in vitro release models in formulation development and quality control of parenteral depots. Expert Opin Drug Deliv 6(12):1283–1295

    Article  CAS  PubMed  Google Scholar 

  • Lee DS, Kang DW, Choi GW, Choi HG, Cho HY (2020) Development of level A in vitro-vivo correlation for electrosprayed microspheres containing leuprolide: Physicochemical, pharmacokinetic, and pharmacodynamic evaluation. Pharmaceutics 12(1):36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim YW, Tan WS, Ho KL, Mariatulqabtiah AR, Abu Kasim NH, Abd Rahman N, Wong TW, Chee CF (2022a) Challenges and Complications of poly(lactic-co-glycolic acid)-based long-acting drug product development. Pharmaceutics 14(3):614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim JY, Kim TH, Song CH, Kim DH, Shin BS, Shin S (2022b) Novel extended IVIVC combined with DoE to predict pharmacokinetics from formulation compositions. J Control Release 343:443–456

    Article  CAS  PubMed  Google Scholar 

  • Loo JC, Riegelman S (1968) New method for calculating the intrinsic absorption rate of Drugs. J Pharm Sci 57(6):918–928

    Article  CAS  PubMed  Google Scholar 

  • Mahar R, Chakraborty A, Nainwal N, Bahuguna R, Sajwan M, Jakhmola V (2023) Application of PLGA as a biodegradable and biocompatible polymer for pulmonary delivery of Drugs. AAPS PharmSciTech 24(1):39

    Article  CAS  PubMed  Google Scholar 

  • Mitra A, Wu Y (2010) Use of in Vitro-In vivo correlation (IVIVC) to facilitate the development of polymer-based controlled release injectable formulation. Recent Pat Drug Deliv Formul 4(2):94–104

    Article  CAS  PubMed  Google Scholar 

  • Modi NB, Lam A, Lindemulder E, Wang B, Gupta SK (2000) Application of in vitro-in vivo correlations (IVIVC) in setting formulation release specifications. Biopharm Drug Dispos 21(8):321–326

    Article  CAS  PubMed  Google Scholar 

  • Park EJ, Na DH, Lee KC (2007) In vitro release study of mono-PEGylated growth hormone-releasing peptide-6 from PLGA microspheres. Int J Pharm 343:281–283

    Article  CAS  PubMed  Google Scholar 

  • Park CW, Lee HJ, Oh DW, Kang JH, Han CS, Kim DW (2018) Preparation and in vitro/in vivo evaluation of PLGA microspheres containing norquetiapine for long-acting injection. Drug Des Devel Ther 12:711–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi F, Wu J, Li H, Ma G (2019) Recent research and development of PLGA/PLA microspheres/nanoparticles: a review in scientific and industrial aspects. Front Chem Sci Eng 13:14–27

    Article  CAS  Google Scholar 

  • Rawat A, Burgess DJ (2011) USP apparatus 4 method for in vitro release testing of protein loaded microspheres. Int J Pharm 409:178–184

    Article  CAS  PubMed  Google Scholar 

  • Rawat A, Bhardwaj U, Burgess DJ (2012) Comparison of in vitro-in vivo release of Risperdal(®) Consta(®) microspheres. Int J Pharm 434:115–121

    Article  CAS  PubMed  Google Scholar 

  • Selmin F, Blasi P, DeLuca PP (2012) Accelerated polymer biodegradation of risperidone poly(D, L-lactide-co-glycolide) microspheres. AAPS PharmSciTech 13(4):1465–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Burgess DJ (2012) Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings. Int J Pharm 422:341–348

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Burgess DJ (2015) In vitro-in vivo correlation for complex non-oral drug products: where do we stand? J Control Release 219:644–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Choi S, Qu W, Wang Y, Burgess DJ (2015) In vitro-in vivo correlation of parenteral risperidone polymeric microspheres. J Control Release 218:2–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Lee K, Choi S, Qu W, Wang Y, Burgess DJ (2016) A reproducible accelerated in vitro release testing method for PLGA microspheres. Int J Pharm 498:274–282

    Article  CAS  PubMed  Google Scholar 

  • Song JS, Kim SY, Nam JH, Lee J, Song SY, Seong H (2022) IVIVC of Octreotide in PLGA-Glucose Microsphere Formulation, Sandostatin® LAR. AAPS PharmSciTech 23(7):258

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Zhang B, Sun R, Liu W, Zhu Q, Zhang X, Wang R, Chen C (2021) PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv 28(1):1397–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner JG, Nelson E (1963) Per cent absorbed time plots derived from blood level and/or urinary excretion data. J Pharm Sci 52:610–611

    Article  CAS  PubMed  Google Scholar 

  • Wan B, Bao Q, Burgess DJ (2022) In vitro-in vivo correlation of PLGA microspheres: Effect of Polymer source variation and temperature. J Control Release 347:347–355

    Article  CAS  PubMed  Google Scholar 

  • Wan B, Bao Q, Burgess D (2023) Long-acting PLGA microspheres: advances in excipient and product analysis toward improved product understanding. Adv Drug Deliv Rev 198:114857

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang BM, Schwendeman SP (2002) Characterization of the initial burst release of a model peptide from poly(D,L-lactide-co-glycolide) microspheres. J Control Release 82:289–307

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Qu W, Choi SH (2016) FDA’s Regulatory Science Program for Generic PLA/PLGA-Based Drug Products. American Pharmaceutical Review—The Review of American Pharmaceutical Business & Technology. Available online: https://www.americanpharmaceuticalreview.com/Featured-Articles/188841-FDA-s-Regulatory-Science-Program-for-Generic-PLA-PLGA-Based-Drug-Products/ (Accessed on 22 October 2023)

  • Wei G, Pettway GJ, McCauley LK, Ma PX (2004) The release profiles and bioactivity of parathyroid hormone from poly(lactic-co-glycolic acid) microspheres. Biomaterials 25(2):345–352

    Article  CAS  PubMed  Google Scholar 

  • Woo BH, Kostanski JW, Gebrekidan S, Dani BA, Thanoo BC et al. (2001) Preparation, characterization and in vivo evaluation of 120-day poly(D,L-lactide) leuprolide microspheres. J Control Release 75:307–315.

  • Wu B, Wu L, He Y, Yin Z, Deng L (2021) Engineered PLGA microspheres for extended release of brexpiprazole: in vitro and in vivo studies. Drug Dev Ind Pharm 47(6):1001–1010

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Yang Y, Chi Q, Li Z, Zhang H, Li Y, Yang Y (2014) Controlled release of dutasteride from biodegradable microspheres: in vitro and in vivo studies. PLoS ONE 9(12):e114835

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie X, Li Z, Zhang L, Chi Q, Yang Y, Zhang H, Yang Y, Mei X (2015) A novel accelerated in vitro release method to evaluate the release of thymopentin from PLGA microspheres. Pharm Dev Technol 20(5):633–640

    Article  CAS  PubMed  Google Scholar 

  • Zeb A, Gul M, Nguyen TTL, Maeng HJ (2022) Controlled release and targeted drug delivery with poly(lactic-co-glycolic acid) nanoparticles: reviewing two decades of research. J Pharm Investig 52:683–724

    Article  CAS  Google Scholar 

  • Zhang C, Wang A, Wang H, Yan M, Liang R, He X, Fu F, Mu H, Sun K (2019) Entecavir-loaded poly (lactic-co-glycolic acid) microspheres for long-term therapy of chronic hepatitis-B: Preparation and in vitro and in vivo evaluation. Int J Pharm 560:27–34

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Gao Y, Tang X, Lei W, Yang Y, Yu F, Liu Y, Yang M, Wang Y, Gong W, Li Z, Gao C, Mei X (2019) Development and evaluation of Ropivacaine Loaded Poly(Lactic-Co-Glycolic acid) microspheres with low Burst Release. Curr Drug Deliv 16(6):490–499

    Article  CAS  PubMed  Google Scholar 

  • Zolnik B, Raton J, Burgess D (2005) Application of USP apparatus 4 and in situ fiber optic analysis to microsphere release testing. Dissolution Technol 12:11–14

    Article  CAS  Google Scholar 

  • Zolnik BS, Leary PE, Burgess DJ (2006) Elevated temperature accelerated release testing of PLGA microspheres. J Control Release 112(3):293–300

    Article  CAS  PubMed  Google Scholar 

  • Zolnik BS, Burgess DJ (2008) Evaluation of in vivo-in vitro release of dexamethasone from PLGA microspheres. J Control Release 127:137–145

Download references

Acknowledgements

This work was supported by a grant (22183MFDS366) from Ministry of Food and Drug Safety of South Korea in 2022–2025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Hee Na.

Ethics declarations

Conflict of interest

All authors (S.S. Kim, S.W. Ro, and D.H. Na) declare that they have no conflict of interest.

Research involving human and/or animal participants

This work does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.S., Ro, S.W. & Na, D.H. In vitro–in vivo correlation of microsphere formulations: recent advances and challenges. J. Pharm. Investig. 54, 37–49 (2024). https://doi.org/10.1007/s40005-023-00655-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-023-00655-6

Keywords

Navigation