Skip to main content
Log in

Optimizing Process Parameters for Controlled Drug Delivery: A Quality by Design (QbD) Approach in Naltrexone Microspheres

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The formulation of microspheres involves a complex manufacturing process with multiple steps. Identifying the appropriate process parameters to achieve the desired quality attributes poses a significant challenge. This study aims to optimize the critical process parameters (CPPs) involved in the preparation of naltrexone microspheres using a Quality by Design (QbD) methodology. Additionally, the research aims to assess the drug release profiles of these microspheres under both in vivo and in vitro conditions. Critical process parameters (CPPs) and critical quality attributes (CQAs) were identified, and a Box-Behnken design was utilized to delineate the design space, ensuring alignment with the desired Quality Target Product Profile (QTPP). The investigated CPPs comprised polymer concentration, aqueous phase ratio to organic phase ratio, and quench volume. The microspheres were fabricated using the oil-in-water emulsion solvent extraction technique. Analysis revealed that increased polymer concentration was correlated with decreased particle size, reduced quench volume resulted in decreased burst release, and a heightened aqueous phase ratio to organic phase ratio improved drug entrapment. Upon analyzing the results, an optimal formulation was determined. In conclusion, the study conducted in vivo drug release testing on both the commercially available innovator product and the optimized test product utilizing an animal model. The integration of in vitro dissolution data with in vivo assessments presents a holistic understanding of drug release dynamics. The QbD approach-based optimization of CPPs furnishes informed guidance for the development of generic pharmaceutical formulations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data analysed during this study are included in this published article.

Abbreviations

CPPs:

Critical process parameters

QBD:

Quality be design

CQA:

Critical Quality Attribute

QTPP:

Quality Target Product Profile

PLGA:

Poly Lactate co glycolate

FDA:

Food and Drug Administration

DOE:

Design of Experiments

DCM:

Dichloromethane

PVA:

Polyvinyl chloride

BBD:

Boc Behnken Design

PS:

Particle Size

EE:

Entrapment efficiency

BR:

Burst Release

DR:

Drug Release

THF:

Tetrahydrofuran

LC:

Drug Loading Content

DSC:

Differential scanning calorimetry

SEM:

Surface electron microscopy

PBS:

Phosphate-buffered saline

t1/2:

Half-life

MRT:

Mean Residence Time

References

  1. Prajapati SK, Jain A, Jain A, Jain S. Biodegradable polymers and constructs: A novel approach in drug delivery. Eur Polym J. 2019;120:109191.

    Article  CAS  Google Scholar 

  2. Patel M, Jha A, Patel R. Potential application of PLGA microsphere for tissue engineering. J Polym Res. 2021;28:214.

    Article  CAS  Google Scholar 

  3. Butreddy A, Gaddam RP, Kommineni N, Dudhipala N, Voshavar C. PLGA/PLA-based long-acting injectable depot microspheres in clinical use: production and characterization overview for protein/peptide delivery. IJMS. 2021;22(16):8884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jain A, Kunduru KR, Basu A, Mizrahi B, Domb AJ, Khan W. Injectable formulations of poly(Lactic acid) and its copolymers in clinical use. Adv Drug Deliv Rev. 2016;107:213–27.

    Article  CAS  PubMed  Google Scholar 

  5. Jin S, Xia X, Huang J, Yuan C, Zuo Y, Li Y, et al. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater. 2021;127:56–79.

    Article  CAS  PubMed  Google Scholar 

  6. Kohno M, Andhariya JV, Wan B, et al. The effect of PLGA molecular weight differences on risperidone release from microspheres. Int J Pharm. 2020;582:119339.

    Article  CAS  PubMed  Google Scholar 

  7. Andhariya JV, Shen J, Choi S, Wang Y, Zou Y, Burgess DJ. Development of in vitro-in vivo correlation of parenteral naltrexone loaded polymeric microspheres. JCR. 2017;255:27–35.

    Article  CAS  Google Scholar 

  8. Hales D, Vlase L, Porav SA, et al. A quality by design (Qbd) study on enoxaparin sodium loaded polymeric microspheres for colon-specific delivery. Eur J Pharm Sci. 2017;100:249–61.

    Article  CAS  PubMed  Google Scholar 

  9. Hua Y, Su Y, Zhang H, et al. Poly(Lactic-co-glycolic acid) microsphere production based on quality by design: a review. Drug Deliv. 2021;28(1):1342–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lakshmikanth Reddy P, Shanmugasundaram S. QBD approach for design and characterization of pramlintide microspheres for controlled drug release. J Pharm Innov. 2023;18:2325–47.

    Article  Google Scholar 

  11. Haidar A, Tsoukas MA, Bernier-Twardy S, Yale J-F, Rutkowski J, Bossy A, et al. A novel dual-hormone insulin-and-pramlintide artificial pancreas for type 1 diabetes: a randomized controlled crossover trial. Diabetes Care. 2020;43:597–606.

    Article  CAS  PubMed  Google Scholar 

  12. Dhamecha D, Movsas R, Sano U, Menon JU. Applications of alginate microspheres in therapeutics delivery and cell culture: Past, present and future. Int J Pharm. 2019;569:118627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lengyel M, Kállai-Szabó N, Antal V, Laki AJ, Antal I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci Pharm. 2019;87:20.

    Article  CAS  Google Scholar 

  14. Su Y, Zhang B, Sun R, Liu W, Zhu Q, Zhang X, et al. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv. 2021;28:1397–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park H, Ha E, Kim J, Kim M. Injectable sustained-release poly(Lactic-co-glycolic acid) (Plga) microspheres of exenatide prepared by supercritical fluid extraction of emulsion process based on a design of experiment approach. Bioeng Transl Med. 2023;8(3):e10485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gu B, Burgess DJ. Prediction of dexamethasone release from PLGA microspheres prepared with polymer blends using a design of experiment approach. Int J Pharm. 2015;495(1):393–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jhawat V, Gulia M, Gupta S, Maddiboyina B, Dutt R. Integration of pharmacogenomics and theranostics with nanotechnology as quality by design (QbD) approach for formulation development of novel dosage forms for effective drug therapy. JCR. 2020;327:500–11.

    Article  CAS  Google Scholar 

  18. Grangeia HB, Silva C, Simões SP, Reis MS. Quality by design in pharmaceutical manufacturing: A systematic review of current status, challenges and future perspectives. EJPB. 2019;147:19–37.

    Google Scholar 

  19. Shah M, Patel N, Tripathi N, Vyas VK. Capillary electrophoresis methods for impurity profiling of drugs: A review of the past decade. JPA. 2022;12:15–28.

    PubMed  Google Scholar 

  20. Soni G, Kale K, Shetty S, Gupta MK, Yadav KS. Quality by design (QbD) approach in processing polymeric nanoparticles loading anticancer drugs by high pressure homogenizer. Heliyon. 2020;6:e03846.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Andhariya JV, Choi S, Wang Y, Zou Y, Burgess DJ, Shen J. Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres. Int J Pharm. 2017;520(1–2):79–85. https://doi.org/10.1016/j.ijpharm.2017.01.050.

    Article  CAS  PubMed  Google Scholar 

  22. Naltrexone long acting formulation and method of use. https://patentimages.storage.googleapis.com/76/11/01/48ba9849b5c1fd/US7919499.pdf

  23. Rapalli VK, Banerjee S, Khan S, et al. QbD-driven formulation development and evaluation of topical hydrogel containing ketoconazole loaded cubosomes. Mater Sci Eng C. 2021;119:111548.

    Article  CAS  Google Scholar 

  24. Park H, Ha E, Kim J, Kim M. Injectable sustained-release poly(lactic-co-glycolic acid) (PLGA) microspheres of exenatide prepared by supercritical fluid extraction of emulsion process based on a design of experiment approach. Bioeng Transl Med. 2023;8:e10485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gu B, Burgess DJ. Prediction of dexamethasone release from PLGA microspheres prepared with polymer blends using a design of experiment approach. Int Pharm. 2015;495:393–403.

    Article  CAS  Google Scholar 

  26. Dorati R, DeTrizio A, Genta I, et al. An experimental design approach to the preparation of pegylated polylactide-co-glicolide gentamicin loaded microparticles for local antibiotic delivery. Mater Sci Eng C. 2016;58:909–17.

    Article  CAS  Google Scholar 

  27. Wu Z, Zhao M, Zhang W, Yang Z, Xu S, Shang Q. Influence of drying processes on the structures, morphology and in vitro release profiles of risperidone-loaded PLGA microspheres. J Microencapsul. 2019;36(1):21–31.

    Article  CAS  PubMed  Google Scholar 

  28. Ronkart SN, Paquot M, Fougnies C, Deroanne C, Van Herck JC, Blecker C. Determination of total water content in inulin using the volumetric Karl Fischer titration. Talanta. 2006;70(5):1006–10.

    Article  CAS  PubMed  Google Scholar 

  29. Han J, Fitzpatrick J, Cronin K, Maidannyk V, Miao S. Particle size, powder properties and the breakage behaviour of infant milk formula. J Food Eng. 2021;292:110367.

    Article  Google Scholar 

  30. Caputo F, Vogel R, Savage J, Vella G, Law A, Della Camera G, et al. Measuring particle size distribution and mass concentration of nanoplastics and microplastics: addressing some analytical challenges in the sub-micron size range. J Colloid Interface Sci. 2021;588:401–17.

    Article  CAS  PubMed  Google Scholar 

  31. Varia U, Patel A, Katariya H, Detholia K. Formulation and optimization of polymeric agglomerates of Bosentan monohydrate by crystallo-co-agglomeration technique. Bull Natl Res Cent. 2022;46:156.

    Article  Google Scholar 

  32. Fang Y, Zhang N, Li Q, Chen J, Xiong S, Pan W. Characterizing the release mechanism of donepezil-loaded PLGA microspheres in vitro and in vivo. JDDST. 2019;51:430–7.

    CAS  Google Scholar 

  33. Hsu M-Y, Huang Y-T, Weng C-J, Chen C-M, Su Y-F, Chu S-Y, et al. Preparation and in vitro/in vivo evaluation of doxorubicin-loaded poly[lactic-co-glycol acid] microspheres using electrospray method for sustained drug delivery and potential intratumoral injection. Colloids Surf. 2020;190:110937.

    Article  CAS  Google Scholar 

  34. Hasan ML, Kim B, Padalhin AR, Faruq O, Sultana T, Lee B-T. In vitro and in vivo evaluation of bioglass microspheres incorporated brushite cement for bone regeneration. Mater Sci Eng C. 2019;103:109775.

    Article  CAS  Google Scholar 

  35. Li H, Xu Y, Tong Y, Dan Y, Zhou T, He J, et al. Sucrose acetate isobutyrate as an in situ forming implant for sustained release of local anesthetics. CDD. 2019;16:331–40.

    Article  CAS  Google Scholar 

  36. Vishwa B, Moin A, Gowda DV, Rizvi SMD, Hegazy WAH, Abu Lila AS, et al. Pulmonary targeting of inhalable moxifloxacin microspheres for effective management of tuberculosis. Pharmaceutics. 2021;13:79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pervaiz F, Ahmad M, Li L, Murtaza G. Development and characterization of olanzapine loaded poly(lactide-co-glycolide) microspheres for depot injection: in vitro and in vivo release profiles. CDD. 2019;16:375–83.

    Article  CAS  Google Scholar 

  38. Liang B, Zhao D, Liu Y, Guo X, Zhang H, Zhang L, et al. Chemoembolization of liver cancer with doxorubicin-loaded CalliSpheres microspheres: plasma pharmacokinetics, intratumoral drug concentration, and tumor necrosis in a rabbit model. Drug Deliv and Transl Res. 2020;10:185–91.

    Article  CAS  Google Scholar 

  39. Vugmeyster Y, Xu X, Theil F-P, Khawli LA, Leach MW. Pharmacokinetics and toxicology of therapeutic proteins: Advances and challenges. World J Biol Chem. 2012;3:73–92.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sharifi F, Otte A, Yoon G, Park K. Continuous in-line homogenization process for scale-up production of naltrexone-loaded PLGA microparticles. JCR. 2020;325:347–58. https://doi.org/10.1016/j.jconrel.2020.06.023.

    Article  CAS  Google Scholar 

  41. Wang Y, Burgess DJ. Influence of storage temperature and moisture on the performance of microsphere/hydrogel composites. Int J Pharm. 2013;454(1):310–5. https://doi.org/10.1016/j.ijpharm.2013.06.012.

    Article  CAS  PubMed  Google Scholar 

  42. Guideline IH. Impurities: Guideline for residual solvents Q3C (R5). Current Step. 2005;4:1–25.

    Google Scholar 

  43. Zeng W, Hui H, Liu Z, Chang Z, Wang M, He B, et al. TPP ionically cross-linked chitosan/PLGA microspheres for the delivery of NGF for peripheral nerve system repair. Carbohydr Polym. 2021;258:117684.

    Article  CAS  PubMed  Google Scholar 

  44. Lee J, Sah H. Preparation of PLGA Nanoparticles by Milling Spongelike PLGA Microspheres. Pharmaceutics. 2022;14:1540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou J, Walker J, Ackermann R, Olsen K, Hong JKY, Wang Y, et al. Effect of Manufacturing Variables and Raw Materials on the Composition-Equivalent PLGA Microspheres for 1-Month Controlled Release of Leuprolide. Mol Pharmaceutics. 2020;17:1502–15.

    Article  CAS  Google Scholar 

  46. Jia Z, Ma C, Zhang H. PLGA coatings and PLGA drug-loading coatings for cardiac stent samples: degradation characteristics and blood compatibility. Coatings. 2021;11:1427.

    Article  CAS  Google Scholar 

  47. Hua Y, Wang Z, Wang D, Lin X, Liu B, Zhang H, et al. Key factor study for generic long-acting PLGA microspheres based on a reverse engineering of Vivitrol®. Molecules. 2021;26:1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kumskova N, Ermolenko Y, Osipova N, Semyonkin A, Kildeeva N, Gorshkova M, et al. How subtle differences in polymer molecular weight affect doxorubicin-loaded PLGA nanoparticles degradation and drug release. J Microencapsul. 2020;37:283–95.

    Article  CAS  PubMed  Google Scholar 

  49. Ochi M, Wan B, Bao Q, Burgess DJ. Influence of PLGA molecular weight distribution on leuprolide release from microspheres. Int J Pharm. 2021;599:120450.

    Article  CAS  PubMed  Google Scholar 

  50. Vardhan H, Mittal P, Adena SKR, Mishra B. Long-circulating polyhydroxybutyrate-co-hydroxyvalerate nanoparticles for tumor targeted docetaxel delivery: Formulation, optimization and in vitro characterization. Eur J Pharm Sci. 2017;99:85–94.

    Article  CAS  PubMed  Google Scholar 

  51. Baghaei M, Tekie FSM, Khoshayand MR, Varshochian R, Hajiramezanali M, Kachousangi MJ, et al. Optimization of chitosan-based polyelectrolyte nanoparticles for gene delivery, using design of experiment: in vitro and in vivo study. MSEC. 2021;118:111036.

    Article  CAS  Google Scholar 

  52. Ramireddy AR, Behara DK. QbD Based Formulation Development and Optimisation of Ozenoxacin Topical Nano-Emulgel and Efficacy Evaluation Using Impetigo Mice Model. AAPS PharmSciTech. 2024;25:90.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors specially acknowledge SRM College of pharmacy to perform all type of work for providing his valuable insights in drafting the article.

Funding

The authors declare that no funding has been received for research.

Author information

Authors and Affiliations

Authors

Contributions

Lakshmikanth Reddy P conducted experimental design, prepared the materials, collected the data, interpreted the results, and written the initial version of the manuscript. Sangeetha Shanmugasundaram supervised and corrected the manuscript. The final manuscript has been reviewed and endorsed by all authors.

Corresponding author

Correspondence to Sangeetha Shanmugasundaram.

Ethics declarations

Ethics Approval and Consent to Participate

Ethical approval is available for animal trials.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no Conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3071 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, P.L., Shanmugasundaram, S. Optimizing Process Parameters for Controlled Drug Delivery: A Quality by Design (QbD) Approach in Naltrexone Microspheres. AAPS PharmSciTech 25, 105 (2024). https://doi.org/10.1208/s12249-024-02830-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02830-w

Keywords

Navigation