Skip to main content

Advertisement

Log in

Nitric oxide-releasing albumin nanoclusters facilitate healing of methicillin-resistant Staphylococcus aureus-infected cutaneous wounds

  • Original Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Purpose

Although nitric oxide (NO)-releasing nanoparticles have garnered significant attention owing to their potent antibacterial effects against methicillin-resistant Staphylococcus aureus (MRSA) and direct promotion of wound healing, the majority of NO-releasing nanoparticles are composed of synthetic polymers or inorganic materials, which may lead to unfavorable effects in the body. To overcome this limitation, we developed NO-releasing albumin nanoclusters (NO/ANCs) using bovine serum albumin, a fully biocompatible endogenous material.

Methods

NO/ANCs were fabricated by incorporating diethylenetriamine diazeniumdiolate (DT/NO) into albumin nanoclusters via electrostatic interactions, followed by glutaraldehyde crosslinking between the albumin molecules. The antibacterial effects of the NO/ANCs were investigated using the LIVE/DEAD® BacLight™ bacterial viability kit. The enhanced wound healing and in vivo antibacterial effects were evaluated in a mouse model of MRSA-challenged full-thickness wounds.

Results

NO/ANCs were successfully fabricated and could release NO for more than 17 h. NO/ANCs demonstrated enhanced in vitro antibacterial effects and exhibited improved in vivo antibacterial and wound-healing effects in a mouse model of MRSA-challenged full-thickness wounds.

Conclusion

NO/ANCs could be a promising formulation for the treatment of MRSA-infected cutaneous wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aragao-Santiago L, Hillaireau H, Grabowski N, Mura S, Nascimento TL, Dufort S, Coll J-L, Tsapis N, Fattal E (2016) Compared in vivo toxicity in mice of lung delivered biodegradable and non-biodegradable nanoparticles. Nanotoxicology 10:292–302

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Su M, Hasan N, Lee J, Kwak D, Kim DY, Kim K, Lee EH, Jung JH, Yoo J-W (2020) Nitric oxide-releasing thermoresponsive pluronic F127/alginate hydrogel for enhanced antibacterial activity and accelerated healing of infected wounds. Pharmaceutics 12:926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao J, Hlaing SP, Lee J, Kim J, Lee EH, Kang SH, Hong SW, Yoon I-S, Yun H, Jung Y (2022) Bacteria-adhesive nitric oxide-releasing graphene oxide nanoparticles for MRPA-infected wound healing therapy. ACS Appl Mater Interfaces 14:50507–50519

    Article  CAS  PubMed  Google Scholar 

  • Carpenter AW, Schoenfisch MH (2012) Nitric oxide release: part II. Therapeutic applications. Chem Soc Rev 41:3742–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi M, Hasan N, Cao J, Lee J, Hlaing SP, Yoo J-W (2020) Chitosan-based nitric oxide-releasing dressing for anti-biofilm and in vivo healing activities in MRSA biofilm-infected wounds. Int J Biol Macromol 142:680–692

    Article  CAS  PubMed  Google Scholar 

  • Daeschlein G (2013) Antimicrobial and antiseptic strategies in wound management. Int Wound J 10:9–14

    Article  PubMed  PubMed Central  Google Scholar 

  • De Lima R, De Oliveira J, Ludescher A, Molina M, Itri R, Seabra A, Haddad P (2013). In: Journal of Physics: Conference Series 012034 (IOP Publishing)

  • Esmaeili F, Hosseini-Nasr M, Rad-Malekshahi M, Samadi N, Atyabi F, Dinarvand R (2007) Preparation and antibacterial activity evaluation of rifampicin-loaded poly lactide-co-glycolide nanoparticles. Nanomed Nanotechnol Biol Med 3:161–167

    Article  CAS  Google Scholar 

  • Guo SA, Dipietro LA (2010) Factors affecting wound healing. J Dent Res 89:219–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall JR, Rouillard KR, Suchyta DJ, Brown MD, Ahonen MJR, Schoenfisch MH (2019) Mode of nitric oxide delivery affects antibacterial action. ACS Biomater Sci Eng 6:433–441

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasan N, Cao J, Lee J, Naeem M, Hlaing SP, Kim J, Jung Y, Lee B-L, Yoo J-W (2019) PEI/NONOates-doped PLGA nanoparticles for eradicating methicillin-resistant Staphylococcus aureus biofilm in diabetic wounds via binding to the biofilm matrix. Mater Sci Eng: C 103:109741

    Article  CAS  Google Scholar 

  • Hasan N, Cao J, Lee J, Kim H, Yoo J-W (2021) Development of clindamycin-loaded alginate/pectin/hyaluronic acid composite hydrogel film for the treatment of MRSA-infected wounds. J Pharm Invest 51:597–610

    Article  CAS  Google Scholar 

  • Hasan N, Lee J, Kwak D, Kim H, Saparbayeva A, Ahn H-J, Yoon I-S, Kim M-S, Jung Y, Yoo J-W (2021) Diethylenetriamine/NONOate-doped alginate hydrogel with sustained nitric oxide release and minimal toxicity to accelerate healing of MRSA-infected wounds. Carbohydr Polym 270:118387

    Article  CAS  PubMed  Google Scholar 

  • Hetrick EM, Shin JH, Paul HS, Schoenfisch MH (2009) Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials 30:2782–2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hlaing SP, Kim J, Lee J, Hasan N, Cao J, Naeem M, Lee EH, Shin JH, Jung Y, Lee B-L (2018) S-Nitrosoglutathione loaded poly (lactic-co-glycolic acid) microparticles for prolonged nitric oxide release and enhanced healing of methicillin-resistant Staphylococcus aureus-infected wounds. Eur J Pharm Biopharm 132:94–102

    Article  CAS  PubMed  Google Scholar 

  • Ho C-M, Liao K-J, Lok C-N, Che C-M (2011) Nitric oxide-releasing ruthenium nanoparticles. Chem Commun 47:10776–10778

    Article  CAS  Google Scholar 

  • Karimi M, Bahrami S, Ravari SB, Zangabad PS, Mirshekari H, Bozorgomid M, Shahreza S, Sori M, Hamblin MR (2016) Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv 13:1609–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelm M (1999) Nitric oxide metabolism and breakdown. Biochim et Biophys Acta (BBA)-Bioenerget 1411:273–289

    Article  CAS  Google Scholar 

  • Khan A, Wilson B, Gould I (2018) Current and future treatment options for community-associated MRSA infection. Expert Opin Pharmacother 19:457–470

    Article  CAS  PubMed  Google Scholar 

  • Khatak S, Mehta M, Awasthi R, Paudel KR, Singh SK, Gulati M, Hansbro NG, Hansbro PM, Dua K, Dureja H (2020) Solid lipid nanoparticles containing anti-tubercular drugs attenuate the Mycobacterium marinum infection. Tuberculosis 125:102008

    Article  CAS  PubMed  Google Scholar 

  • Kim JO, Noh J-K, Thapa RK, Hasan N, Choi M, Kim JH, Lee J-H, Ku SK, Yoo J-W (2015) Nitric oxide-releasing chitosan film for enhanced antibacterial and in vivo wound-healing efficacy. Int J Biol Macromol 79:217–225

    Article  CAS  PubMed  Google Scholar 

  • Kim D-H, Nguyen TN, Jin Y, Baek N, Back SY, Sim S, Heo K-S, Park J-S (2023) Cream formulation improved skin-lightening effect of ginsenoside Rh1, Rg2, and Hydrangea macrophylla flower extract. J Pharm Invest. https://doi.org/10.1007/s40005-023-00620-3

    Article  Google Scholar 

  • Leaper D, Assadian O, Edmiston CE (2015) Approach to chronic wound infections. Br J Dermatol 173:351–358

    Article  CAS  PubMed  Google Scholar 

  • Lee ES, Youn YS (2016) Albumin-based potential drugs: focus on half-life extension and nanoparticle preparation. J Pharm Invest 46:305–315

    Article  CAS  Google Scholar 

  • Lee J, Hlaing SP, Cao J, Hasan N, Ahn H-J, Song K-W, Yoo J-W (2019) In situ hydrogel-forming/nitric oxide-releasing wound dressing for enhanced antibacterial activity and healing in mice with infected wounds. Pharmaceutics 11:496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Kwak D, Kim H, Kim J, Hlaing SP, Hasan N, Cao J, Yoo J-W (2020) Nitric oxide-releasing s-nitrosoglutathione-conjugated poly (lactic-co-glycolic acid) nanoparticles for the treatment of MRSA-infected cutaneous wounds. Pharmaceutics 12:618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Hlaing SP, Hasan N, Kwak D, Kim H, Cao J, Yoon I-S, Yun H, Jung Y, Yoo J-W (2021) Tumor-penetrable nitric oxide-releasing nanoparticles potentiate local antimelanoma therapy. ACS Appl Mater Interfaces 13:30383–30396

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Saparbayeva A, Hlaing SP, Kwak D, Kim H, Kim J, Lee EH, Yoo J-W (2022) Cupriavidus necator-produced polyhydroxybutyrate/eudragit FS hybrid nanoparticles mitigates ulcerative colitis via colon-targeted delivery of cyclosporine A. Pharmaceutics 14:2811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang H, Nacharaju P, Friedman A, Friedman JM (2015) Nitric oxide generating/releasing materials. Future Sci OA.https://doi.org/10.4155/fso.15.54

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo J-D, Chen AF (2005) Nitric oxide: a newly discovered function on wound healing. Acta Pharmacol Sin 26:259–264

    Article  CAS  PubMed  Google Scholar 

  • Martins VGFC, Alencar LMR, Souza PFN, Lorentino CMA, Frota HF, Dos Santos ALS, Gemini-Piperni S, Morandi V, Rodrigues VG, Pereira JX (2023) Wound dressing using graphene quantum dots: a proof of concept. J Pharm Invest 53:333–342

    Article  Google Scholar 

  • Mohammapdour R, Ghandehari H (2022) Mechanisms of immune response to inorganic nanoparticles and their degradation products. Adv Drug Deliv Rev 180:114022

    Article  CAS  PubMed  Google Scholar 

  • Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, Han C, Bisignano C, Rao P, Wool E (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399:629–655

    Article  CAS  Google Scholar 

  • Nurhasni H, Cao J, Choi M, Kim I, Lee BL, Jung Y, Yoo J-W (2015) Nitric oxide-releasing poly (lactic-co-glycolic acid)-polyethylenimine nanoparticles for prolonged nitric oxide release, antibacterial efficacy, and in vivo wound healing activity. Int J Nanomed 10:3065

    CAS  Google Scholar 

  • Privett BJ, Broadnax AD, Bauman SJ, Riccio DA, Schoenfisch MH (2012) Examination of bacterial resistance to exogenous nitric oxide. Nitric Oxide 26:169–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samouilov A, Zweier JL (1998) Development of chemiluminescence-based methods for specific quantitation of nitrosylated thiols. Anal Biochem 258:322–330

    Article  CAS  PubMed  Google Scholar 

  • Saparbayeva A, Lee J, Hlaing SP, Kim J, Kwak D, Kim H, Lee EH, Hwang S, Kim M-S, Moon HR (2023) Ionically bridged dexamethasone sodium phosphate–zinc–PLGA nanocomplex in alginate microgel for the local treatment of ulcerative colitis. Arch Pharm Res. https://doi.org/10.1007/s12272-023-01456-z

    Article  PubMed  Google Scholar 

  • Schairer DO, Chouake JS, Nosanchuk JD, Friedman AJ (2012) The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence 3:271–279

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin JH, Metzger SK, Schoenfisch MH (2007) Synthesis of nitric oxide-releasing silica nanoparticles. J Am Chem Soc 129:4612–4619

    Article  CAS  PubMed  Google Scholar 

  • Spada A, Emami J, Tuszynski JA, Lavasanifar A (2021) The uniqueness of albumin as a carrier in nanodrug delivery. Mol Pharm 18:1862–1894

    Article  CAS  PubMed  Google Scholar 

  • Thapa RK, Diep DB, Tønnesen HH (2021) Nanomedicine-based antimicrobial peptide delivery for bacterial infections: recent advances and future prospects. J Pharm Invest 51:377–398

    Article  CAS  Google Scholar 

  • Tsikas D (2007) Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: appraisal of the Griess reaction in the l-arginine/nitric oxide area of research. J Chromatogr B 851:51–70

    Article  CAS  Google Scholar 

  • Zaki NM, Hafez MM (2012) Enhanced antibacterial effect of ceftriaxone sodium-loaded chitosan nanoparticles against intracellular Salmonella typhimurium. AAPS PharmSciTech 13:411–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zhang Q, Wang T, Xu N, Lu T, Hong W, Penuelas J, Gillings M, Wang M, Gao W (2022) Assessment of global health risk of antibiotic resistance genes. Nat Commun 13:1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Annich GM, Wu Y, Meyerhoff ME (2006) Water-soluble poly (ethylenimine)-based nitric oxide donors: preparation, characterization, and potential application in hemodialysis. Biomacromolecules 7:2565–2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by PNU-RENovation (2022–2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Wook Yoo.

Ethics declarations

Conflict of interest

All authors (D. Kwak, J. Lee, J. Kim, H. Kim, J.-Y. Lee, D.‑D. Kim, and J.‑W. Yoo)

Research involving human and animal participants

All animal experiments were reviewed and approved by the Pusan National University Institutional Animal Care and Use Committee (PNU-IACUC) on May 16, 2022 (PNU-2022-0090).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 530.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, D., Lee, J., Kim, J. et al. Nitric oxide-releasing albumin nanoclusters facilitate healing of methicillin-resistant Staphylococcus aureus-infected cutaneous wounds. J. Pharm. Investig. 54, 51–60 (2024). https://doi.org/10.1007/s40005-023-00641-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-023-00641-y

Keywords

Navigation