Skip to main content

Advertisement

Log in

Three-Dimensional Printing for Oral Pharmaceutical Dosage Forms

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

The advent of three-dimensional (3D) printers in the pharmaceutical industry is making a leap forward. 3D printing technology can be applied to patient-friendly drug development by adjusting drug dose, shape, flavor, and dug release pattern to meet individual patient needs. Oral pharmaceutical dosage forms can be printed using various 3D printing technologies, and it is necessary to understand the characteristics and applied conditions of each printing technology.

Area covered

This article covers five commonly used 3D printing technologies (binder jetting, material extrusion, vat photopolymerization, material jetting, and powder bed fusion) and the properties of four oral pharmaceutical dosage forms (immediate-release tablets, modified-release tablets, orodispersible tablets, and orodispersible films) produced using 3D printing technology.

Expert opinion

3D printing technologies are suitable for preparing drugs in oral dosage forms. Based on the understanding of the factors of 3D printing that influence drug release, it is possible to develop patient-friendly 3D-printed drugs for various active pharmaceutical ingredients (APIs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright© 2016, with permission from Elsevier). d–f Printlets with different infill density produced by direct powder extrusion (DPE). d Photographs and microCT scans of 3D-printed tablets with 30% infill density and e 80% infill density. f Relative dissolved amount of a drug at 30 min, for directly printed 10% caffeine tablets with low (30%) and high (80%) infill densities (reproduced with modifications from Fanous et al. (2020), Copyright© 2020, with permission from Elsevier). g-i Caplets with perforated channels to accelerate drug release from 3D-printed tablets. g Schematic illustration of perforating 18-square sectioned channels in caplet design. h Visualization of XμCT data of an 18-short channel design with 1mm channels. i Impact of channel width and orientation on the dissolution release pattern of hydrochlorothiazide methacrylate tablets (reproduced with modifications from Sadia et al. (2018a), Copyright© 2018, with permission from Elsevier)

Fig. 3

Copyright© 2015, with permission from the American Chemical Society) d–f 3D-printed polypills. d Schematic structural diagram of the polypill design, showing the aspirin and hydrochlorothiazide immediate-release compartment and atenolol, pravastatin, and ramipril sustained-release compartments. e Image of multi-active tablets composed of sustained-release compartments (bottom) and immediate-release dotted compartments (top). f In vitro cumulative drug release profiles of each drug from the five drug-loaded compartments of the polypill (reproduced with permission from Khaled et al. (2015), Copyright© 2015, with permission from Elsevier)

Fig. 4

Copyright© 2018, with permission from Elsevier)

Fig. 5

Copyright© 2018, with permission from Elsevier). d, e Aripiprazole loaded QR-coded orodispersible film (QRODF). d Visual images of QRODF containing 20 mg aripiprazole. e Example of the foldability of QRODF (reproduced with modifications from Oh et al. (2020), Copyright© 2020, with permission from Elsevier)

Fig. 6

Similar content being viewed by others

References

  • Abouhashem Y, Dayal M, Savanah S, Štrkalj G (2015) The application of 3D printing in anatomy education. Med Educ Online 20:29847

    Article  PubMed  Google Scholar 

  • Acosta-Vélez GF, Wu BM (2016) 3D pharming: direct printing of personalized pharmaceutical tablets. Polym Sci. https://doi.org/10.4172/2471-9935.100011

    Article  Google Scholar 

  • Acosta-Velez GF, Linsley CS, Craig MC, Wu BM (2017) Photocurable bioink for the Inkjet 3D pharming of hydrophilic drugs. Bioengineering 4:11

    Article  PubMed Central  CAS  Google Scholar 

  • Acosta-Velez GF, Linsley CS, Zhu TZ, Wu W, Wu BM (2018a) Photocurable bioinks for the 3D pharming of combination therapies. Polymers 10:1372

    Article  PubMed Central  CAS  Google Scholar 

  • Acosta-Velez GF, Zhu TZ, Linsley CS, Wu BM (2018b) Photocurable poly(ethylene glycol) as a bioink for the inkjet 3D pharming of hydrophobic drugs. Int J Pharm 546:145–153

    Article  CAS  PubMed  Google Scholar 

  • Aita IE, Breitkreutz J, Quodbach J (2020) Investigation of semi-solid formulations for 3D printing of drugs after prolonged storage to mimic real-life applications. Eur J Pharm Sci 146:105266

    Article  PubMed  CAS  Google Scholar 

  • Al-Dulimi Z, Wallis M, Tan DK, Maniruzzaman M, Nokhodchi A (2021) 3D printing technology as innovative solutions for biomedical applications. Drug Discov Today 26:360–383

    Article  CAS  PubMed  Google Scholar 

  • Alhijjaj M, Belton P, Qi S (2016) An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing. Eur J Pharm Biopharm 108:111–125

    Article  CAS  PubMed  Google Scholar 

  • Alhnan MA, Okwuosa TC, Sadia M, Wan KW, Ahmed W, Arafat B (2016) Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res 33:1817–1832

    Article  CAS  PubMed  Google Scholar 

  • Allahham N, Fina F, Marcuta C, Kraschew L, Mohr W, Gaisford S, Basit AW, Goyanes A (2020) Selective laser sintering 3D printing of orally disintegrating printlets containing ondansetron. Pharmaceutics 12:110

    Article  CAS  PubMed Central  Google Scholar 

  • Aquino RP, Barile S, Grasso A, Saviano M (2018) Envisioning smart and sustainable healthcare: 3D printing technologies for personalized medication. Futures 103:35–50

    Article  Google Scholar 

  • Araujo MRP, Sa-Barreto LL, Gratieri T, Gelfuso GM, Cunha-Filho M (2019) The digital pharmacies era: how 3D printing technology using fused deposition modeling can become a reality. Pharmaceutics 11:128

    Article  CAS  PubMed Central  Google Scholar 

  • Austin FC (2020) Hot melt extrusion paired fused deposition modeling 3D printing of orodispersible films of chlorpheniramine maleate 27835760 thesis, The University of Mississippi

  • Awad A, Trenfield SJ, Gaisford S, Basit AW (2018a) 3D printed medicines: a new branch of digital healthcare. Int J Pharm 548:586–596

    Article  CAS  PubMed  Google Scholar 

  • Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW (2018b) Reshaping drug development using 3D printing. Drug Discov Today 23:1547–1555

    Article  CAS  PubMed  Google Scholar 

  • Awad A, Fina F, Trenfield SJ, Patel P, Goyanes A, Gaisford S, Basit AW (2019) 3D Printed pellets (miniprintlets): a novel, multi-drug, controlled release platform technology. Pharmaceutics 11:148

    Article  CAS  PubMed Central  Google Scholar 

  • Azad MA, Olawuni D, Kimbell G, Badruddoza AZM, Hossain MS, Sultana T (2020) Polymers for extrusion-based 3D printing of pharmaceuticals: a holistic materials-process perspective. Pharmaceutics 12:124

    Article  CAS  PubMed Central  Google Scholar 

  • Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16:496–504

    Article  CAS  Google Scholar 

  • Boudriau S, Hanzel C, Massicotte J, Sayegh L, Wang J, Lefebvre M (2016) Randomized comparative bioavailability of a novel three-dimensional printed fast-melt formulation of levetiracetam following the administration of a single 1000-mg dose to healthy human volunteers under fasting and fed conditions. Drugs r&d 16:229–238

    Article  CAS  Google Scholar 

  • Chamarthy SP, Pinal R (2008) Plasticizer concentration and the performance of a diffusion-controlled polymeric drug delivery system. Colloids Surf A 331:25–30

    Article  CAS  Google Scholar 

  • Cheah CM, Leong KF, Chua CK, Low KH, Quek HS (2002) Characterization of microfeatures in selective laser sintered drug delivery devices. Proc Inst Mech Eng [h] 216:369–383

    Article  CAS  Google Scholar 

  • Cho HW, Baek SH, Lee BJ, Jin HE (2020) Orodispersible polymer films with the poorly water-soluble drug, olanzapine: hot-melt pneumatic extrusion for single-process 3D printing. Pharmaceutics 12:692

    Article  CAS  PubMed Central  Google Scholar 

  • Cohen IT, Joffe D, Hummer K, Soluri A (2005) Ondansetron oral disintegrating tablets: acceptability and efficacy in children undergoing adenotonsillectomy. Anesth Analg 101:59–63

    Article  CAS  PubMed  Google Scholar 

  • Conceicao J, Farto-Vaamonde X, Goyanes A, Adeoye O, Concheiro A, Cabral-Marques H, Sousa Lobo JM, Alvarez-Lorenzo C (2019) Hydroxypropyl-beta-cyclodextrin-based fast dissolving carbamazepine printlets prepared by semisolid extrusion 3D printing. Carbohyd Polym 221:55–62

    Article  CAS  Google Scholar 

  • Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Battu SK, Mcginity JW, Martin C (2007) Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm 33:909–926

    Article  CAS  PubMed  Google Scholar 

  • Cui M, Pan H, Fang D, Qiao S, Wang S, Pan W (2020) Fabrication of high drug loading levetiracetam tablets using semi-solid extrusion 3D printing. J Drug Deliv Sci Technol 57:101683

    Article  CAS  Google Scholar 

  • D’souza AA, Shegokar R (2016) Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv 13:1257–1275

    Article  CAS  PubMed  Google Scholar 

  • Daly R, Harrington TS, Martin GD, Hutchings IM (2015) Inkjet printing for pharmaceutics—a review of research and manufacturing. Int J Pharm 494:554–567

    Article  CAS  PubMed  Google Scholar 

  • Dixit N, Maurya SD, Sagar BP (2013) Sustained release drug delivery system. Indian J Res Pharm Biotechnol 1:305

    CAS  Google Scholar 

  • Dressman JB, Amidon GL, Reppas C, Shah VP (1998) Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res 15:11–22

    Article  CAS  PubMed  Google Scholar 

  • Duranovic M, Obeid S, Madzarevic M, Cvijic S, Ibric S (2021) Paracetamol extended release FDM 3D printlets: evaluation of formulation variables on printability and drug release. Int J Pharm 592:120053

    Article  PubMed  CAS  Google Scholar 

  • Eduardo DT, Ana SE, Jose BF (2021) A micro-extrusion 3D printing platform for fabrication of orodispersible printlets for pediatric use. Int J Pharm 605:120854

    Article  CAS  PubMed  Google Scholar 

  • Ehtezazi T, Algellay M, Islam Y, Roberts M, Dempster NM, Sarker SD (2018) The application of 3D printing in the formulation of multilayered fast dissolving oral films. J Pharm Sci 107:1076–1085

    Article  CAS  PubMed  Google Scholar 

  • El Aita I, Breitkreutz J, Quodbach J (2019) On-demand manufacturing of immediate release levetiracetam tablets using pressure-assisted microsyringe printing. Eur J Pharm Biopharm 134:29–36

    Article  PubMed  CAS  Google Scholar 

  • Elbadawi M, Nikjoo D, Gustafsson T, Gaisford S, Basit AW (2021) Pressure-assisted microsyringe 3D printing of oral films based on pullulan and hydroxypropyl methylcellulose. Int J Pharm 595:120197

    Article  CAS  PubMed  Google Scholar 

  • Elbl J, Gajdziok J, Kolarczyk J (2020) 3D printing of multilayered orodispersible films with in-process drying. Int J Pharm 575:118883

    Article  CAS  PubMed  Google Scholar 

  • EMEA-ICH (2000) ICH topic Q 6 a specifications: test procedures and acceptance criteria for new drug substances and new drug products: chemical substances. https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-6-test-procedures-acceptance-criteria-new-drug-substances-new-drug-products-chemical_en.pdf. Accessed 10 Sep, 2021

  • Fanous M, Gold S, Muller S, Hirsch S, Ogorka J, Imanidis G (2020) Simplification of fused deposition modeling 3D-printing paradigm: feasibility of 1-step direct powder printing for immediate release dosage form production. Int J Pharm 578:119124

    Article  CAS  PubMed  Google Scholar 

  • Fina F, Goyanes A, Gaisford S, Basit AW (2017) Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm 529:285–293

    Article  CAS  PubMed  Google Scholar 

  • Fina F, Goyanes A, Madla CM, Awad A, Trenfield SJ, Kuek JM, Patel P, Gaisford S, Basit AW (2018a) 3D printing of drug-loaded gyroid lattices using selective laser sintering. Int J Pharm 547:44–52

    Article  CAS  PubMed  Google Scholar 

  • Fina F, Madla CM, Goyanes A, Zhang J, Gaisford S, Basit AW (2018b) Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm 541:101–107

    Article  CAS  PubMed  Google Scholar 

  • Firth J, Basit AW, Gaisford S (2018). In: Basit AW, Gaisford S (eds) 3D printing of pharmaceuticals. Springer International Publishing, Berlin, pp 133–151

    Chapter  Google Scholar 

  • Ford S, Despeisse M (2016) Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J Clean Prod 137:1573–1587

    Article  Google Scholar 

  • Ford S, Minshall T (2019) Invited review article: Where and how 3D printing is used in teaching and education. Addit Manuf 25:131–150

    Google Scholar 

  • Garsuch V, Breitkreutz J (2010) Comparative investigations on different polymers for the preparation of fast-dissolving oral films. J Pharm Pharmacol 62:539–545

    Article  CAS  PubMed  Google Scholar 

  • Germini G, Peltonen L (2021) 3D printing of drug nanocrystals for film formulations. Molecules 26:3941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh T, Ghosh A, Prasad D (2011) A review on new generation orodispersible tablets and its future prospective. Int J Pharm Pharm Sci 3:1–7

    CAS  Google Scholar 

  • Gioumouxouzis CI, Katsamenis OL, Bouropoulos N, Fatouros DG (2017) 3D printed oral solid dosage forms containing hydrochlorothiazide for controlled drug delivery. J Drug Deliv Sci Technol 40:164–171

    Article  CAS  Google Scholar 

  • Goyanes A, Buanz AB, Hatton GB, Gaisford S, Basit AW (2015a) 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm 89:157–162

    Article  CAS  PubMed  Google Scholar 

  • Goyanes A, Chang H, Sedough D, Hatton GB, Wang J, Buanz A, Gaisford S, Basit AW (2015b) Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int J Pharm 496:414–420

    Article  CAS  PubMed  Google Scholar 

  • Goyanes A, Robles Martinez P, Buanz A, Basit AW, Gaisford S (2015c) Effect of geometry on drug release from 3D printed tablets. Int J Pharm 494:657–663

    Article  CAS  PubMed  Google Scholar 

  • Goyanes A, Wang J, Buanz A, Martinez-Pacheco R, Telford R, Gaisford S, Basit AW (2015d) 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol Pharm 12:4077–4084

    Article  CAS  PubMed  Google Scholar 

  • Goyanes A, Kobayashi M, Martinez-Pacheco R, Gaisford S, Basit AW (2016) Fused-filament 3D printing of drug products: Microstructure analysis and drug release characteristics of PVA-based caplets. Int J Pharm 514:290–295

    Article  CAS  PubMed  Google Scholar 

  • Goyanes A, Allahham N, Trenfield SJ, Stoyanov E, Gaisford S, Basit AW (2019) Direct powder extrusion 3D printing: Fabrication of drug products using a novel single-step process. Int J Pharm 567:118471

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Mishra A, Gupta V, Bansal P, Singh R, Singh A (2010) Recent trends of fast dissolving tablet-an overview of formulation technology. Int J Pharm Biol Arch 1:1–10

    Google Scholar 

  • Hager I, Golonka A, Putanowicz R (2016) 3D printing of buildings and building components as the future of sustainable construction? Procedia Eng 151:292–299

    Article  Google Scholar 

  • Hardeland R (2009) New approaches in the management of insomnia: weighing the advantages of prolonged-release melatonin and synthetic melatoninergic agonists. Neuropsychiatr Dis Treat 5:341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Wildman RD, Tuck CJ, Christie SD, Edmondson S (2016) An investigation of the behavior of solvent based polycaprolactone ink for material jetting. Sci Rep 6:20852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath J (2014) Mastering 3D printing. Springer, Berlin, pp 3–10

    Google Scholar 

  • Hull CW (1984) Apparatus for production of three-dimensional objects by stereolithography. United States Patent, Appl., No. 638905, Filed.

  • Irfan M, Rabel S, Bukhtar Q, Qadir MI, Jabeen F, Khan A (2016) Orally disintegrating films: a modern expansion in drug delivery system. Saudi Pharm J 24:537–546

    Article  PubMed  Google Scholar 

  • Jabbour S, Ziring B (2011) Advantages of extended-release metformin in patients with type 2 diabetes mellitus. Postgrad Med 123:15–23

    Article  PubMed  Google Scholar 

  • Jamroz W, Kurek M, Lyszczarz E, Szafraniec J, Knapik-Kowalczuk J, Syrek K, Paluch M, Jachowicz R (2017) 3D printed orodispersible films with Aripiprazole. Int J Pharm 533:413–420

    Article  CAS  PubMed  Google Scholar 

  • Jamroz W, Kurek M, Czech A, Szafraniec J, Gawlak K, Jachowicz R (2018a) 3D printing of tablets containing amorphous aripiprazole by filaments co-extrusion. Eur J Pharm Biopharm 131:44–47

    Article  CAS  PubMed  Google Scholar 

  • Jamroz W, Szafraniec J, Kurek M, Jachowicz R (2018b) 3D printing in pharmaceutical and medical applications—recent achievements and challenges. Pharm Res 35:176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jamroz W, Kurek M, Szafraniec-Szczesny J, Czech A, Gawlak K, Knapik-Kowalczuk J, Leszczynski B, Wrobel A, Paluch M, Jachowicz R (2020) Speed it up, slow it down. An issue of bicalutamide release from 3D printed tablets. Eur J Pharm Sci 143:105169

    Article  CAS  PubMed  Google Scholar 

  • Joshi SC, Sheikh AA (2015) 3D printing in aerospace and its long-term sustainability. Virtual Phys Prototyp 10:175–185

    Article  Google Scholar 

  • Kempin W, Domsta V, Grathoff G, Brecht I, Semmling B, Tillmann S, Weitschies W, Seidlitz A (2018) Immediate release 3D-printed tablets produced via fused deposition modeling of a thermo-sensitive drug. Pharm Res 35:124

    Article  PubMed  CAS  Google Scholar 

  • Khaled SA, Burley JC, Alexander MR, Roberts CJ (2014) Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int J Pharm 461:105–111

    Article  CAS  PubMed  Google Scholar 

  • Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ (2015) 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles. J Controll Release 217:308–314

    Article  CAS  Google Scholar 

  • Khaled SA, Alexander MR, Wildman RD, Wallace MJ, Sharpe S, Yoo J, Roberts CJ (2018) 3D extrusion printing of high drug loading immediate release paracetamol tablets. Int J Pharm 538:223–230

    Article  CAS  PubMed  Google Scholar 

  • Khan Z, Pillay V, Choonara YE, Du Toit LC (2009) Drug delivery technologies for chronotherapeutic applications. Pharm Dev Technol 14:602–612

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Lee JC, Ko JY, Lee SH, Kim NA, Jeong SH (2021) 3D-printed tablets using a single-step hot-melt pneumatic process for poorly soluble drugs. Int J Pharm 595:120257

    Article  CAS  PubMed  Google Scholar 

  • Konta AA, Garcia-Pina M, Serrano DR (2017) Personalised 3D printed medicines: which techniques and polymers are more successful? Bioengineering 4:79

    Article  PubMed Central  CAS  Google Scholar 

  • Korte C, Quodbach J (2018) Formulation development and process analysis of drug-loaded filaments manufactured via hot-melt extrusion for 3D-printing of medicines. Pharm Dev Technol 23:1117–1127

    Article  CAS  PubMed  Google Scholar 

  • Kuzminska M, Pereira BC, Habashy R, Peak M, Isreb M, Gough TD, Isreb A, Alhnan MA (2021) Solvent-free temperature-facilitated direct extrusion 3D printing for pharmaceuticals. Int J Pharm 598:120305

    Article  CAS  PubMed  Google Scholar 

  • Kyobula M, Adedeji A, Alexander MR, Saleh E, Wildman R, Ashcroft I, Gellert PR, Roberts CJ (2017) 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. J Controll Release 261:207–215

    Article  CAS  Google Scholar 

  • Lee J, Song C, Noh I, Song S, Rhee YS (2020) Hot-melt 3D extrusion for the fabrication of customizable modified-release solid dosage forms. Pharmaceutics 12:738

    Article  CAS  PubMed Central  Google Scholar 

  • Lee Y, Kim K, Kim M, Choi DH, Jeong SH (2017) Orally disintegrating films focusing on formulation, manufacturing process, and characterization. J Pharm Investig 47:183–201

    Article  CAS  Google Scholar 

  • Li CL, Martini LG, Ford JL, Roberts M (2005) The use of hypromellose in oral drug delivery. J Pharm Pharmacol 57:533–546

    Article  CAS  PubMed  Google Scholar 

  • Li P, Jia H, Zhang S, Yang Y, Sun H, Wang H, Pan W, Yin F, Yang X (2019a) Thermal extrusion 3D printing for the fabrication of puerarin immediate-release tablets. AAPS PharmSciTech 21:20

    Article  PubMed  CAS  Google Scholar 

  • Li P, Zhang S, Sun W, Cui M, Wen H, Li Q, Pan W, Yang X (2019b) Flexibility of 3D extruded printing for a novel controlled-release puerarin gastric floating tablet: design of internal structure. AAPS PharmSciTech 20:236

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Wen H, Jia D, Guan X, Pan H, Yang Y, Yu S, Zhu Z, Xiang R, Pan W (2017) Preparation and investigation of controlled-release glipizide novel oral device with three-dimensional printing. Int J Pharm 525:5–11

    Article  CAS  PubMed  Google Scholar 

  • Liew KB, Tan YTF, Peh KK (2012) Characterization of oral disintegrating film containing donepezil for Alzheimer disease. AAPS PharmSciTech 13:134–142

    Article  CAS  PubMed  Google Scholar 

  • Low KH, Leong KF, Chua CK, Du ZH, Cheah CM (2001) Characterization of SLS parts for drug delivery devices. Rapid Prototyp J 7:262–268

    Article  Google Scholar 

  • Manivannan R (2009) Oral disintegrating tablets: a future compaction. Drug Invent Today 1:61–65

    CAS  Google Scholar 

  • Martin C, De Baerdemaeker A, Poelaert J, Madder A, Hoogenboom R, Ballet S (2016) Controlled-release of opioids for improved pain management. Mater Today 19:491–502

    Article  CAS  Google Scholar 

  • Musazzi UM, Selmin F, Ortenzi MA, Mohammed GK, Franze S, Minghetti P, Cilurzo F (2018) Personalized orodispersible films by hot melt ram extrusion 3D printing. Int J Pharm 551:52–59

    Article  CAS  PubMed  Google Scholar 

  • Nagaraju T, Gowthami R, Rajashekar M, Sandeep S, Mallesham M, Sathish D, Shravan Kumar Y (2013) Comprehensive review on oral disintegrating films. Curr Drug Deliv 10:96–108

    Article  CAS  PubMed  Google Scholar 

  • Nyol S, Gupta M (2013) Immediate drug release dosage form: a review. J Drug Deliv Ther. https://doi.org/10.22270/jddt.v3i2.457

    Article  Google Scholar 

  • Oblom H, Sjoholm E, Rautamo M, Sandler N (2019a) Towards printed pediatric medicines in hospital pharmacies: comparison of 2D and 3D-printed orodispersible warfarin films with conventional oral powders in unit dose sachets. Pharmaceutics 11:334

    Article  CAS  PubMed Central  Google Scholar 

  • Oblom H, Zhang J, Pimparade M, Speer I, Preis M, Repka M, Sandler N (2019b) 3D-printed isoniazid tablets for the treatment and prevention of tuberculosis-personalized dosing and drug release. AAPS PharmSciTech 20:52

    Article  CAS  PubMed  Google Scholar 

  • Oh BC, Jin G, Park C, Park JB, Lee BJ (2020) Preparation and evaluation of identifiable quick response (QR)-coded orodispersible films using 3D printer with directly feeding nozzle. Int J Pharm 584:119405

    Article  CAS  PubMed  Google Scholar 

  • Okwuosa TC, Stefaniak D, Arafat B, Isreb A, Wan KW, Alhnan MA (2016) A lower temperature FDM 3D printing for the manufacture of patient-specific immediate release tablets. Pharm Res 33:2704–2712

    Article  CAS  PubMed  Google Scholar 

  • Perrie Y, Rades T (2012) Pharmaceutics: drug delivery and targeting. Pharmaceutical Press, London

    Google Scholar 

  • Pietrzak K, Isreb A, Alhnan MA (2015) A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm 96:380–387

    Article  CAS  PubMed  Google Scholar 

  • Porter SC, Woznicki EJ (1989) Google Patents, 1989.

  • Prasad LK, Smyth H (2016) 3D Printing technologies for drug delivery: a review. Drug Dev Ind Pharm 42:1019–1031

    Article  CAS  PubMed  Google Scholar 

  • Rahman Z, Barakh Ali SF, Ozkan T, Charoo NA, Reddy IK, Khan MA (2018) Additive manufacturing with 3D printing: progress from bench to bedside. AAPS J 20:101

    Article  PubMed  Google Scholar 

  • Rahman Z, Charoo NA, Kuttolamadom M, Asadi A, Khan MA (2020). In: Faintuch J, Faintuch S (eds) Precision medicine for investigators, practitioners and providers. Academic Press, London, pp 473–481

    Chapter  Google Scholar 

  • Rao M, Agrawal DK, Shirsath C (2017) Thermoreversible mucoadhesive in situ nasal gel for treatment of Parkinson’s disease. Drug Dev Ind Pharm 43:142–150

    Article  CAS  PubMed  Google Scholar 

  • Repka MA, Battu SK, Upadhye SB, Thumma S, Crowley MM, Zhang F, Martin C, Mcginity JW (2007) Pharmaceutical applications of hot-melt extrusion: Part II. Drug Dev Ind Pharm 33:1043–1057

    Article  CAS  PubMed  Google Scholar 

  • Research USDOHaHSFaDaCFDEA (1997) FDA guidance for industry dissolution testing of immediate release solid oral dosage forms.

  • Robles Martinez P, Basit AW, Gaisford S (2018). In: Basit AW, Gaisford S (eds) 3D printing of pharmaceuticals. Springer International Publishing, Berlin, pp 55–79

    Chapter  Google Scholar 

  • Sadia M, Sosnicka A, Arafat B, Isreb A, Ahmed W, Kelarakis A, Alhnan MA (2016) Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Int J Pharm 513:659–668

    Article  CAS  PubMed  Google Scholar 

  • Sadia M, Arafat B, Ahmed W, Forbes RT, Alhnan MA (2018a) Channelled tablets: an innovative approach to accelerating drug release from 3D printed tablets. J Controll Release 269:355–363

    Article  CAS  Google Scholar 

  • Sadia M, Isreb A, Abbadi I, Isreb M, Aziz D, Selo A, Timmins P, Alhnan MA (2018b) From “fixed dose combinations” to “a dynamic dose combiner”: 3D printed bi-layer antihypertensive tablets. Eur J Pharm Sci 123:484–494

    Article  CAS  PubMed  Google Scholar 

  • Sajan J, Cinu T, Chacko A, Litty J, Jaseeda T (2009) Chronotherapeutics and chronotherapeutic drug delivery systems. Tropical J Pharm Res 8:467–475

    Article  CAS  Google Scholar 

  • Selmin F, Khalid GM, Musazzi UM, Demartin F, Minghetti P, Cilurzo F (2021) Relevance of production method on the physical stability and in vitro biopharmaceutical performances of olanzapine orodispersible film. Int J Pharm 603:120697

    Article  CAS  PubMed  Google Scholar 

  • Sjoholm E, Sandler N (2019) Additive manufacturing of personalized orodispersible warfarin films. Int J Pharm 564:117–123

    Article  CAS  PubMed  Google Scholar 

  • Skowyra J, Pietrzak K, Alhnan MA (2015) Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci 68:11–17

    Article  CAS  PubMed  Google Scholar 

  • Slavkova M, Breitkreutz J (2015) Orodispersible drug formulations for children and elderly. Eur J Pharm Sci 75:2–9

    Article  CAS  PubMed  Google Scholar 

  • Smolensky MH, Peppas NA (2007) Chronobiology, drug delivery, and chronotherapeutics. Adv Drug Deliv Rev 59:828–851

    Article  CAS  PubMed  Google Scholar 

  • Sohi H, Sultana Y, Khar RK (2004) Taste masking technologies in oral pharmaceuticals: recent developments and approaches. Drug Dev Ind Pharm 30:429–448

    Article  CAS  PubMed  Google Scholar 

  • Sothornvit R, Krochta JM (2001) Plasticizer effect on mechanical properties of β-lactoglobulin films. J Food Eng 50:149–155

    Article  Google Scholar 

  • Sun J, Zhou W, Huang D, Fuh JYH, Hong GS (2015) An overview of 3D printing technologies for food fabrication. Food Bioprocess Technol 8:1605–1615

    Article  CAS  Google Scholar 

  • Sun S, Brandt M, Easton M (2017) Powder bed fusion processes. Elsevier, New York, pp 55–77

    Google Scholar 

  • Sundy E, Danckwerts MP (2004) A novel compression-coated doughnut-shaped tablet design for zero-order sustained release. Eur J Pharm Sci 22:477–485

    Article  CAS  PubMed  Google Scholar 

  • Sutton AT, Kriewall CS, Leu MC, Newkirk JW (2016) Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes. Virtual Phys Prototyp 12:3–29

    Article  Google Scholar 

  • Tagami T, Yoshimura N, Goto E, Noda T, Ozeki T (2019) Fabrication of muco-adhesive oral films by the 3D printing of hydroxypropyl methylcellulose-based catechin-loaded formulations. Biol Pharm Bull 42:1898–1905

    Article  CAS  PubMed  Google Scholar 

  • Talagani M, Dormohammadi S, Dutton R, Godines C, Baid H, Abdi F, Kunc V, Compton B, Simunovic S, Duty C (2015) Numerical simulation of big area additive manufacturing (3D printing) of a full size car. SAMPE J 51:27–36

    Google Scholar 

  • Tan DK, Maniruzzaman M, Nokhodchi A (2019) Development and optimisation of novel polymeric compositions for sustained release theophylline caplets (PrintCap) via FDM 3D printing. Polymers 12:27

    Article  PubMed Central  CAS  Google Scholar 

  • Tang TO, Holmes S, Dean K, Simon GP (2020) Design and fabrication of transdermal drug delivery patch with milliprojections using material extrusion 3D printing. J Appl Polym Sci 137:48777

    Article  CAS  Google Scholar 

  • Tian P, Yang F, Xu Y, Lin MM, Yu LP, Lin W, Lin QF, Lv ZF, Huang SY, Chen YZ (2018) Oral disintegrating patient-tailored tablets of warfarin sodium produced by 3D printing. Drug Dev Ind Pharm 44:1918–1923

    Article  CAS  PubMed  Google Scholar 

  • Tiwari RV, Patil H, Repka MA (2016) Contribution of hot-melt extrusion technology to advance drug delivery in the 21st century. Expert Opin Drug Deliv 13:451–464

    Article  CAS  PubMed  Google Scholar 

  • Torrado AR, Shemelya CM, English JD, Lin Y, Wicker RB, Roberson DA (2015) Characterizing the effect of additives to ABS on the mechanical property anisotropy of specimens fabricated by material extrusion 3D printing. Addit Manuf 6:16–29

    CAS  Google Scholar 

  • Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW (2018a) 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol Sci 39:440–451

    Article  CAS  PubMed  Google Scholar 

  • Trenfield SJ, Madla CM, Basit AW, Gaisford S (2018b) In: Basit AW, Gaisford S (eds) 3D Printing of pharmaceuticals. Springer International Publishing, Cham, pp 41–54

    Chapter  Google Scholar 

  • U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) (2003) Bioavailability and bioequivalence studies for orally administered drug products—general consideration. https://www.fda.gov/files/drugs/published/Guidance-for-Industry-Bioavailability-and-Bioequivalence-Studies-for-Orally-Administered-Drug-Products---General-Considerations.PDF. Accessed 10 Sep, 2021

  • U.S. Food and Drug Administration (1997) Dissolution testing of immediate release solid oral dosage forms. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/dissolution-testing-immediate-release-solid-oral-dosage-forms. Accessed 28 July, 2021.

  • U.S. Food and Drug Administration (2008) Orally Disintegrating Tablets. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/orally-disintegrating-tablets. Accessed 4 Aug, 2021

  • U.S. Food and Drug Administration (2015) SPRITAM (levetiracetam) Tablets Printed Labeling. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/207958Orig1s000lbl.pdf. Accessed 29 Sep, 2021

  • Vanderploeg A, Lee S-E, Mamp M (2016) The application of 3D printing technology in the fashion industry. Int J Fashion Des Technol Educn 10:170–179

    Article  Google Scholar 

  • Vithani K, Goyanes A, Jannin V, Basit AW, Gaisford S, Boyd BJ (2018) An Overview of 3D printing technologies for soft materials and potential opportunities for lipid-based drug delivery systems. Pharm Res 36:4

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Goyanes A, Gaisford S, Basit AW (2016) Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm 503:207–212

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Solanki NG, Vasoya JM, Shah AV, Serajuddin ATM (2020) Development of 3D printed tablets by fused deposition modeling using polyvinyl alcohol as polymeric matrix for rapid drug release. J Pharm Sci 109:1558–1572

    Article  CAS  PubMed  Google Scholar 

  • Wickramasinghe S, Do T, Tran P (2020) FDM-based 3D printing of polymer and associated composite: a review on mechanical properties, defects and treatments. Polymers 12:1529

    Article  CAS  PubMed Central  Google Scholar 

  • Wickstrom H, Koppolu R, Makila E, Toivakka M, Sandler N (2020) Stencil printing-a novel manufacturing platform for orodispersible discs. Pharmaceutics 12:33

    Article  CAS  PubMed Central  Google Scholar 

  • Xu X, Robles-Martinez P, Madla CM, Joubert F, Goyanes A, Basit AW, Gaisford S (2020) Stereolithography (SLA) 3D printing of an antihypertensive polyprintlet: case study of an unexpected photopolymer-drug reaction. Addit Manuf 33:101071

    CAS  Google Scholar 

  • Xu X, Awad A, Robles-Martinez P, Gaisford S, Goyanes A, Basit AW (2021) Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. J Controll Release 329:743–757

    Article  CAS  Google Scholar 

  • Yan TT, Lv ZF, Tian P, Lin MM, Lin W, Huang SY, Chen YZ (2020) Semi-solid extrusion 3D printing ODFs: an individual drug delivery system for small scale pharmacy. Drug Dev Ind Pharm 46:531–538

    Article  CAS  PubMed  Google Scholar 

  • Yu DG, Branford-White C, Ma ZH, Zhu LM, Li XY, Yang XL (2009a) Novel drug delivery devices for providing linear release profiles fabricated by 3DP. Int J Pharm 370:160–166

    Article  CAS  PubMed  Google Scholar 

  • Yu DG, Shen XX, Branford-White C, Zhu LM, White K, Yang XL (2009b) Novel oral fast-disintegrating drug delivery devices with predefined inner structure fabricated by three-dimensional printing. J Pharm Pharmacol 61:323–329

    Article  CAS  PubMed  Google Scholar 

  • Zema L, Melocchi A, Maroni A, Gazzaniga A (2017) Three-dimensional printing of medicinal products and the challenge of personalized therapy. J Pharm Sci 106:1697–1705

    Article  CAS  PubMed  Google Scholar 

  • Ziaee M, Crane NB (2019) Binder jetting: a review of process, materials, and methods. Addit Manuf 28:781–801

    CAS  Google Scholar 

  • Zidan A (2017) CDER researchers explore the promise and potential of 3D printed pharmaceuticals. Spotlight on CDER Science: US Food & Drug Administration.

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIT) (No. 2019R1A2C1005121).

Conflict of interest

All authors (J.H. Kim, K. Kim, and H.-E. Jin) declare that they have no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human and animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyo-Eon Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Kim, K. & Jin, HE. Three-Dimensional Printing for Oral Pharmaceutical Dosage Forms. J. Pharm. Investig. 52, 293–317 (2022). https://doi.org/10.1007/s40005-022-00561-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-022-00561-3

Keywords

Navigation