Skip to main content

Advertisement

Log in

Tableting process-induced solid-state polymorphic transition

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

Polymorphism is that a substance exists into more than two crystalline forms with different molecular arrangements and/or conformations. It has been reported that the polymorphic transition significantly influences several important qualities of a solid drug product such as physical properties of dosage form, physicochemical stability, dissolution rate, permeability and absorption, bioavailability, manufacturability, and commercial scalability. Polymorphic transition can be altered by several pharmaceutical processes.

Area covered

This review paper discussed the tableting process-induced solid-state polymorphic transition in detail. In particular, the basic principles of solid-state polymorphic transition, theoretical hypotheses for their mechanism, solid-state characterization methods for the analysis of polymorphic transition, and research cases for various drugs in relation to polymorphic transition were reviewed.

Expert opinion

For the proper selection of the solid phase of raw materials, formulation design, and robust production process to assure the quality and performance of a final tablet product, the following are essential: (i) an in-depth knowledge based on fundamental understanding of the polymorphic transition mechanisms, (ii) development of a promising analytical technology as a process analytical technology (PAT) available for in situ and in-die real-time measurement of a very small quantity of polymorphic transformation with high sensitivity, and iii) development of a complete technology in the formulation and process that can finely control the undesired polymorphic transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alonzo DE, Zhang GG, Zhou D, Gao Y, Taylor LS (2010) Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res 27:608–618

    CAS  PubMed  Google Scholar 

  • Andronis V, Zografi G (1998) The molecular mobility of supercooled amorphous indomethacin as a function of temperature and relative humidity. Pharm Res 15:835–842

    CAS  PubMed  Google Scholar 

  • Andronis V, Yoshioka M, Zografi G (1997) Effects of sorbed water on the crystallization of indomethacin from the amorphous state. J Pharm Sci 86:346–351

    CAS  PubMed  Google Scholar 

  • Anuar M, Briscoe B (2009) The elastic relaxation of starch tablets during ejection. Powder Technol 195:96–104

    CAS  Google Scholar 

  • Ayala AP (2007) Polymorphism in drugs investigated by low wavenumber Raman scattering. Vib Spectrosc 45:112–116

    CAS  Google Scholar 

  • Ayala A, Caetano M, Honorato S, Mendes Filho J, Siesler H, Faudone S, Cuffini S, Martins F, Da Silva C, Ellena J (2012) Conformational polymorphism of the antidiabetic drug chlorpropamide. J Raman Spectrosc 43:263–272

    CAS  Google Scholar 

  • Baer DR, Engelhard MH, Johnson GE, Laskin J, Lai J, Mueller K, Munusamy P, Thevuthasan S, Wang H, Washton N (2013) Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. J Vac Sci Technol A 31:050820

    PubMed Central  Google Scholar 

  • Bahl D, Bogner RH (2006) Amorphization of indomethacin by co-grinding with Neusilin US2: amorphization kinetics, physical stability and mechanism. Pharm Res 23:2317–2325

    CAS  PubMed  Google Scholar 

  • Bhattacharya S, Suryanarayanan R (2009) Local mobility in amorphous pharmaceuticals—characterization and implications on stability. J Pharm Sci 98:2935–2953

    CAS  PubMed  Google Scholar 

  • Boldyreva EV, Dmitriev V, Hancock BC (2006) Effect of pressure up to 5.5 GPa on dry powder samples of chlorpropamide form-A. Int J Pharm 327:51–57

    CAS  PubMed  Google Scholar 

  • Borka L (1974) The polymorphism of Indomethacine. New modifications, their melting behaviour and solubility.

  • Brittain HG (2002) Effects of mechanical processing on phase composition. J Pharm Sci 91:1573–1580

    CAS  PubMed  Google Scholar 

  • Brittain HG (2018) Polymorphism in pharmaceutical solids. CRC Press, Boca Raton

    Google Scholar 

  • Brittain HG, Grant DJ, Myrdal PB (1999) Effects of polymorphism and solid-state solvation on solubility and dissolution rate. Polym Pharm Solids 95:279–330

    CAS  Google Scholar 

  • Carstensen J, Morris T (1993) Chemical stability of indomethacin in the solid amorphous and molten states. J Pharm Sci 82:657–659

    CAS  PubMed  Google Scholar 

  • Censi R, Di Martino P (2015) Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules 20:18759–18776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty J, Subash M, Thorat BN (2021) Drying induced polymorphic transformation of pharmaceutical ingredients: a critical review of recent progresses and challenges. Dry Technol. https://doi.org/10.1080/07373937.2021.1983823

    Article  Google Scholar 

  • Chan H, Doelker E (1985) Polymorphic transformation of some drugs under compression. Drug Dev Ind Pharm 11:315–332

    CAS  Google Scholar 

  • Chawla G, Bansal AK (2004) Challenges in polymorphism of pharmaceuticals. Crips 5:9–12

    Google Scholar 

  • Chawla G, Gupta P, Thilagavathi R, Chakraborti AK, Bansal AK (2003) Characterization of solid-state forms of celecoxib. Eur J Pharm Sci 20:305–317

    CAS  PubMed  Google Scholar 

  • Chesalov YA, Baltakhinov V, Drebushchak T, Boldyreva E, Chukanov N, Drebushchak V (2008) FT-IR and FT-Raman spectra of five polymorphs of chlorpropamide. Experimental study and ab initio calculations. J Mol Struct 891:75–86

    CAS  Google Scholar 

  • Chieng N, Rades T, Aaltonen J (2011) An overview of recent studies on the analysis of pharmaceutical polymorphs. J Pharm Biomed Anal 55:618–644

    CAS  PubMed  Google Scholar 

  • Crowley KJ, Zografi G (2002) Cryogenic grinding of indomethacin polymorphs and solvates: assessment of amorphous phase formation and amorphous phase physical stability. J Pharm Sci 91:492–507

    CAS  PubMed  Google Scholar 

  • Dalton CR, Clas S-D, Singh J, Khougaz K, Bilbeisi R (2006) Investigating the hydrate conversion propensity of different etoricoxib lots. J Pharm Sci 95:56–69

    CAS  PubMed  Google Scholar 

  • Denny P (2002) Compaction equations: a comparison of the Heckel and Kawakita equations. Powder Technol 127:162–172

    CAS  Google Scholar 

  • Descamps M, Willart J (2016) Perspectives on the amorphisation/milling relationship in pharmaceutical materials. Adv Drug Deliv Rev 100:51–66

    CAS  PubMed  Google Scholar 

  • Descamps M, Willart J, Dudognon E, Caron V (2007) Transformation of pharmaceutical compounds upon milling and comilling: the role of Tg. J Pharm Sci 96:1398–1407

    CAS  PubMed  Google Scholar 

  • Destri GL, Marrazzo A, Rescifina A, Punzo F (2013) Crystal morphologies and polymorphs in tolbutamide microcrystalline powder. J Pharm Sci 102:73–83

    Google Scholar 

  • Dhumal R, Shimpi S, Paradkar A (2007) Development of spray-dried co-precipitate of amorphous celecoxib containing storage and compression stabilizers. Acta Pharm 57:287–300

    CAS  PubMed  Google Scholar 

  • Din SU, Hughes H, O’reilly NJ, Cathcart H, O’ceallaigh T, Ndzie E, Mcloughlin P (2020) Investigation into the stability, crystallization kinetics, and heating rate dependent crystallization of amorphous posaconazole. Cryst Growth Des 20:5129–5142

    CAS  Google Scholar 

  • Drebushchak TN, Ogienko AA, Boldyreva EV (2011) ‘Hedvall effect’in cryogrinding of molecular crystals. A case study of a polymorphic transition in chlorpropamide. CrystEngComm 13:4405–4410

    CAS  Google Scholar 

  • Dunitz J (1995) Phase changes and chemical reactions in molecular crystals. Acta Crystallogr B 51:619–631

    Google Scholar 

  • Elqidra R, Þnlü N, Capan Y, Sahin G, Dalkara T, Hincal A (2004) Effect of polymorphism on in vitro-in vivo properties of carbamazepine conventional tablets. J Drug Deliv Sci Technol 14:147–153

    CAS  Google Scholar 

  • Ferenczy G, Párkányi L, Ãngyán J, Kálmán A, Hegedűs B (2000) Crystal and electronic structure of two polymorphic modifications of famotidine. An experimental and theoretical study. J Mol Struct (thoechem) 503:73–79

    CAS  Google Scholar 

  • Fevotte G (2007) In situ Raman spectroscopy for in-line control of pharmaceutical crystallization and solids elaboration processes: a review. Chem Eng Res Des 85:906–920

    CAS  Google Scholar 

  • Figueirêdo CBM, Nadvorny D, De Medeiros Vieira ACQ, De Medeiros Schver GCR, Sobrinho JLS, Neto PJR, Lee PI, Soares MFDLR (2018) Enhanced delivery of fixed-dose combination of synergistic antichagasic agents posaconazole-benznidazole based on amorphous solid dispersions. Eur J Pharm Sci 119:208–218

    PubMed  Google Scholar 

  • Ghan GA, Lalla JK (2011) Effect of compressional forces on piroxicam polymorphs. J Pharm Pharmacol 44:678–681

    Google Scholar 

  • Giron D (1995) Thermal analysis and calorimetric methods in the characterisation of polymorphs and solvates. Thermochim Acta 248:1–59

    CAS  Google Scholar 

  • Grobelny P, Mukherjee A, Desiraju GR (2012) Polymorphs and hydrates of Etoricoxib, a selective COX-2 inhibitor. CrystEngComm 14:5785–5794

    CAS  Google Scholar 

  • Haleblian J, Mccrone W (1969) Pharmaceutical applications of polymorphism. J Pharm Sci 58:911–929

    CAS  PubMed  Google Scholar 

  • Hancock BC, Parks M (2000) What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res 17:397–404

    CAS  PubMed  Google Scholar 

  • Hancock BC, Zografi G (1997) Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 86:1–12

    CAS  PubMed  Google Scholar 

  • Hassan MA, Salem MS, Sueliman MS, Najib NM (1997) Characterization of famotidine polymorphic forms. Int J Pharm 149:227–232

    CAS  Google Scholar 

  • Hatley RH (1997) Glass fragility and the stability of pharmaceutical preparations—excipient selection. Pharm Dev Technol 2:257–264

    CAS  PubMed  Google Scholar 

  • Hédoux A, Guinet Y, Capet F, Paccou L, Descamps M (2008) Evidence for a high-density amorphous form in indomethacin from Raman scattering investigations. Phys Rev B 77:094205

    Google Scholar 

  • Hédoux A, Decroix A-A, Guinet Y, Paccou L, Derollez P, Descamps M (2011) Low-and high-frequency Raman investigations on caffeine: polymorphism, disorder and phase transformation. J Phys Chem B 115:5746–5753

    PubMed  Google Scholar 

  • Hegedüs B, Bod P, Harsányi K, Péter I, Kalman A, Parkanyi L (1989) Comparison of the polymorphic modifications of famotidine. J Pharm Biomed Anal 7:563–569

    PubMed  Google Scholar 

  • Heinz A, Strachan CJ, Gordon KC, Rades T (2009) Analysis of solid-state transformations of pharmaceutical compounds using vibrational spectroscopy. J Pharm Pharmacol 61:971–988

    CAS  PubMed  Google Scholar 

  • Hilden LR, Morris KR (2004) Physics of amorphous solids. J Pharm Sci 93:3–12

    CAS  PubMed  Google Scholar 

  • Huang C, Klinzing G, Procopio A, Yang F, Ren J, Burlage R, Zhu L, Su Y (2018) Understanding compression-induced amorphization of crystalline posaconazole. Mol Pharm 16:825–833

    Google Scholar 

  • Hubert S, Briancon S, Hedoux A, Guinet Y, Paccou L, Fessi H, Puel F (2011) Process induced transformations during tablet manufacturing: phase transition analysis of caffeine using DSC and low frequency micro-Raman spectroscopy. Int J Pharm 420:76–83

    CAS  PubMed  Google Scholar 

  • Imamura K, Nomura M, Tanaka K, Kataoka N, Oshitani J, Imanaka H, Nakanishi K (2010) Impacts of compression on crystallization behavior of freeze-dried amorphous sucrose. J Pharm Sci 99:1452–1463

    CAS  PubMed  Google Scholar 

  • Imamura K, Kinugawa K, Kagotani R, Nomura M, Nakanishi K (2012) Impact of compression, physical aging, and freezing rate on the crystallization characteristics of an amorphous sugar matrix. J Food Eng 112:313–318

    CAS  Google Scholar 

  • Janković B, Joksimović T, Stare J, Losev E, Zemtsova V, Srčič S, Boldyreva E (2017) Quantification and modeling of nanomechanical properties of chlorpropamide α, β, and γ conformational polymorphs. Eur J Pharm Sci 110:109–116

    PubMed  Google Scholar 

  • Jankowska MA, Kolodziej JA (2015) On the application of the method of fundamental solutions for the study of the stress state of a plate subjected to elastic–plastic deformation. Int J Solids Struct 67:139–150

    Google Scholar 

  • Juban A, Briancon S, Puel F (2016a) Processing-induced-transformations (PITs) during direct compression: impact of compression speeds on phase transition of caffeine. Drug Dev Ind Pharm 42:1857–1864

    CAS  PubMed  Google Scholar 

  • Juban A, Briançon S, Puel F (2016b) Processing-induced-transformations (PITs) during direct compression: impact of tablet composition and compression load on phase transition of caffeine. Int J Pharm 501:253–264

    CAS  PubMed  Google Scholar 

  • Kanaujia P, Poovizhi P, Ng W, Tan R (2015) Amorphous formulations for dissolution and bioavailability enhancement of poorly soluble APIs. Powder Technol 285:2–15

    CAS  Google Scholar 

  • Karmwar P, Graeser K, Gordon KC, Strachan CJ, Rades T (2011) Investigation of properties and recrystallisation behaviour of amorphous indomethacin samples prepared by different methods. Int J Pharm 417:94–100

    CAS  PubMed  Google Scholar 

  • Katz JM, Roopwani R, Buckner IS (2013) A Material-sparing method for assessment of powder deformation characteristics using data collected during a single compression–decompression cycle. J Pharm Sci 102:3687–3693

    CAS  PubMed  Google Scholar 

  • Khoei A, Keshavarz S, Khaloo A (2008) Modeling of large deformation frictional contact in powder compaction processes. Appl Math Model 32:775–801

    Google Scholar 

  • Kichanov SE, Kozlenko DP, Wąsicki J, Nawrocik W, Dubrovinsky LS, Liermann H-P, Morgenroth W, Savenko BN (2015) The polymorphic phase transformations in the chlorpropamide under pressure. J Pharm Sci 104:81–86

    CAS  PubMed  Google Scholar 

  • Kimura K, Hirayama F, Uekama K (1999) Characterization of tolbutamide polymorphs (Burger’s forms II and IV) and polymorphic transition behavior. J Pharm Sci 88:385–391

    CAS  PubMed  Google Scholar 

  • Koivisto M, Heinänen P, Tanninen VP, Lehto V-P (2006) Depth profiling of compression-induced disorders and polymorphic transition on tablet surfaces with grazing incidence X-ray diffraction. Pharm Res 23:813–820

    CAS  PubMed  Google Scholar 

  • Kuminek G, Cavanagh KL, Da Piedade MFTM, Rodríguez-Hornedo N (2019) Posaconazole cocrystal with superior solubility and dissolution behavior. Cryst Growth Des 19:6592–6602

    CAS  Google Scholar 

  • Larkin PJ, Wasylyk J, Raglione M (2015) Application of low-and mid-frequency Raman spectroscopy to characterize the amorphous-crystalline transformation of indomethacin. Appl Spectrosc 69:1217–1228

    CAS  PubMed  Google Scholar 

  • Lawrence XY, Furness MS, Raw A, Outlaw KPW, Nashed NE, Ramos E, Miller SP, Adams RC, Fang F, Patel RM (2003) Scientific considerations of pharmaceutical solid polymorphism in abbreviated new drug applications. Pharm Res 20:531–536

    Google Scholar 

  • Lefebvre C, Guyot-Hermann A, Draguet-Brughmans M, Bouché R, Guyot J (1986) Polymorphic transitions of carbamazepine during grinding and compression. Drug Dev Ind Pharm 12:1913–1927

    CAS  Google Scholar 

  • Lenz E, Ouml BK, Rades T, Knop K, Kleinebudde P (2017) Hot melt extrusion and spray drying of co-amorphous indomethacin-arginine with polymers. J Pharm Sci 106:302–312

    CAS  PubMed  Google Scholar 

  • Leuenberger H, Lanz M (2005) Pharmaceutical powder technology—from art to science: the challenge of the FDA’s Process Analytical Technology initiative. Adv Powder Technol 16:3–25

    CAS  Google Scholar 

  • Lim RTY, Ng WK, Widjaja E, Tan RB (2013) Comparison of the physical stability and physicochemical properties of amorphous indomethacin prepared by co-milling and supercritical anti-solvent co-precipitation. J Supercrit 79:186–201

    CAS  Google Scholar 

  • Lin SY (1992) Isolation and solid-state characteristics of a new crystal form of indomethacin. J Pharm Sci 81:572–576

    CAS  PubMed  Google Scholar 

  • Lin S-Y (2014) An overview of famotidine polymorphs: solid-state characteristics, thermodynamics, polymorphic transformation and quality control. Pharm Res 31:1619–1631

    CAS  PubMed  Google Scholar 

  • Lin S-Y, Cheng W-T, Wang S-L (2006) Thermodynamic and kinetic characterization of polymorphic transformation of famotidine during grinding. Int J Pharm 318:86–91

    CAS  PubMed  Google Scholar 

  • Llinàs A, Goodman JM (2008) Polymorph control: past, present and future. Drug Discov Today 13:198–210

    PubMed  Google Scholar 

  • Lohani S, Grant DJ (2006) Thermodynamics of polymorphs. In: Polymorphism in the pharmaceutical industry, pp 21–42

  • Loshak N, Kichanov S, Kozlenko D, Wąsicki J, Nawrocik W, Lukin E, Lathe C, Savenko B, Bulavin L (2012) Structural changes in chlorpropamide at high pressure. J Synch Invegtig 6:951–953

    CAS  Google Scholar 

  • Loshak N, Kichanov S, Kozlenko D, Wąsicki J, Lukin E, Lathe K, Savenko B, Bulavin L (2013) Changes in the crystalline structure of chlorpropamide at high pressures and temperatures. J Synch Invegtig 7:1143–1147

    CAS  Google Scholar 

  • Lu GW, Hawley M, Smith M, Geiger BM, Pfund W (2006) Characterization of a novel polymorphic form of celecoxib. J Pharm Sci 95:305–317

    CAS  PubMed  Google Scholar 

  • Mah PT, Mah PT, Novakovic D, Novakovic D, Saarinen J, Saarinen J, Van Landeghem S, Van Landeghem S, Peltonen L, Peltonen L, Laaksonen T, Laaksonen T, Isomäki A, Isomäki A, Strachan CJ, Strachan CJ (2017a) Elucidation of compression-induced surface crystallization in amorphous tablets using sum frequency generation (SFG) microscopy. Pharm Res 34:957–970

    CAS  PubMed  Google Scholar 

  • Mah PT, Novakovic D, Saarinen J, Van Landeghem S, Peltonen L, Laaksonen T, Isomäki A, Strachan CJ (2017b) Elucidation of compression-induced surface crystallization in amorphous tablets using sum frequency generation (SFG) microscopy. Pharm Res 34:957–970

    CAS  PubMed  Google Scholar 

  • Mahieu A, Willart J-F, Dudognon E, Eddleston MD, Jones W, Danède F, Descamps M (2013) On the polymorphism of griseofulvin: identification of two additional polymorphs. J Pharm Sci 102:462–468

    CAS  PubMed  Google Scholar 

  • Matsumoto T, Kaneniwa N, Higuchi S, Otsuka M (1991) Effects of temperature and pressure during compression on polymorphic transformation and crushing strength of chlorpropamide tablets. J Pharm Pharmacol 43:74–78

    CAS  PubMed  Google Scholar 

  • Mazel V, Delplace C, Busignies V, Faivre V, Tchoreloff P, Yagoubi N (2011) Polymorphic transformation of anhydrous caffeine under compression and grinding: a re-evaluation. Drug Dev Ind Pharm 37:832–840

    CAS  PubMed  Google Scholar 

  • Meyer MC, Straughn AB, Jarvi EJ, Wood GC, Pelsor FR, Shah VP (1992) The bioinequivalence of carbamazepine tablets with a history of clinical failures. Pharm Res 9:1612–1616

    CAS  PubMed  Google Scholar 

  • Mirza S, Miroshnyk I, Habib MJ, Brausch JF, Hussain MD (2010) Enhanced dissolution and oral bioavailability of piroxicam formulations: modulating effect of phospholipids. Pharmaceutics 2:339–350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monnier X, Viel Q, Schammé B, Petit S, Delbreilh L, Dupray V, Coquerel G, Dargent E (2018) Vitrification of two active pharmaceutical ingredients by fast scanning calorimetry: from structural relaxation to nucleation phenomena. Int J Pharm 536:426–433

    CAS  PubMed  Google Scholar 

  • Morris KR, Griesser UJ, Eckhardt CJ, Stowell JG (2001) Theoretical approaches to physical transformations of active pharmaceutical ingredients during manufacturing processes. Adv Drug Deliv Rev 48:91–114

    CAS  PubMed  Google Scholar 

  • Okumura T, Ishida M, Takayama K, Otsuka M (2006) Polymorphic transformation of indomethacin under high pressures. J Pharm Sci 95:689–700

    CAS  PubMed  Google Scholar 

  • Otsuka M (1993) Effects of environmental temperature and compression energy on polymorphic transformation during tabletting. Drug Dev Ind Pharm 19:2241–2269

    CAS  Google Scholar 

  • Otsuka M, Matsumoto T, Kaneniwa N (1986) Effect of environmental temperature on polymorphic solid-state transformation of indomethacin during grinding. Chem Pharm Bull 34:1784–1793

    CAS  Google Scholar 

  • Otsuka M, Matsumoto T, Kaneniwa N (1989) Effects of the mechanical energy of multi-tableting compression on the polymorphic transformations of chlorpropamide. J Pharm Pharmacol 41:665–669

    CAS  PubMed  Google Scholar 

  • Otsuka M, Matsumoto T, Higuchi S, Otsuka K, Kaneniwa N (1995) Effect of compression temperature on the consolidation mechanism of chlorpropamide polymorphs. J Pharm Sci 84:614–618

    CAS  PubMed  Google Scholar 

  • Pan Q, Guo P, Duan J, Cheng Q, Li H (2012) Comparative crystal structure determination of griseofulvin: powder X-ray diffraction versus single-crystal X-ray diffraction. Chin Sci Bull 57:3867–3871

    CAS  Google Scholar 

  • Park H, Nie H, Dhiman A, Tomar V, Zhou QT (2020) Understanding dynamics of polymorphic conversion during the tableting process using in situ mechanical Raman spectroscopy. Mol Pharm 17:3043–3052

    CAS  PubMed  Google Scholar 

  • Park H, Ha E-S, Kim M-S (2021) Physicochemical analysis techniques specialized in surface characterization of inhalable dry powders. J Pharm Investig 51:519

    CAS  Google Scholar 

  • Patel S, Kaushal AM, Bansal AK (2006) Compression physics in the formulation development of tablets. Crit Rev Therap Drug Carrier Syst 23:1

  • Picker KM (2004) “Soft tableting”: a new concept to tablet pressure sensitive materials. Pharm Dev Technol 9:107–121

    CAS  PubMed  Google Scholar 

  • Pirttimäki J, Laine E, Ketolainen J, Paronen P (1993) Effects of grinding and compression on crystal structure of anhydrous caffeine. Int J Pharm 95:93–99

    Google Scholar 

  • Rasenack N, Müller BW (2002) Crystal habit and tableting behavior. Int J Pharm 244:45–57

    CAS  PubMed  Google Scholar 

  • Reutzel-Edens SM (2006) Achieving polymorph selectivity in the crystallization of pharmaceutical. Curr Opin Drug Discov Devel 9:806–815

    CAS  PubMed  Google Scholar 

  • Rustichelli C, Gamberini G, Ferioli V, Gamberini MC, Ficarra R, Tommasini S (2000) Solid-state study of polymorphic drugs: carbamazepine. J Pharm Biomed Anal 23:41–54

    CAS  PubMed  Google Scholar 

  • Savolainen M, Heinz A, Strachan C, Gordon KC, Yliruusi J, Rades T, Sandler N (2007) Screening for differences in the amorphous state of indomethacin using multivariate visualization. Eur J Pharm Sci 30:113–123

    CAS  PubMed  Google Scholar 

  • Schittny A, Huwyler J, Puchkov M (2020) Mechanisms of increased bioavailability through amorphous solid dispersions: a review. Drug Deliv 27:110–127

    CAS  PubMed  Google Scholar 

  • Schmidt AG, Wartewig S, Picker KM (2003) Potential of carrageenans to protect drugs from polymorphic transformation. Eur J Pharm Biopharm 56:101–110

    CAS  PubMed  Google Scholar 

  • Schmidt AG, Wartewig S, Picker KM (2004) Polyethylene oxides: protection potential against polymorphic transitions of drugs? J Raman Spectrosc 35:360–367

    CAS  Google Scholar 

  • Shen Y-C (2011) Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review. Int J Pharm 417:48–60

    CAS  PubMed  Google Scholar 

  • Shimpi S, Mahadik K, Takada K, Paradkar A (2007) Application of polyglycolized glycerides in protection of amorphous form of etoricoxib during compression. Chem Pharm Bull 55:1448–1451

    CAS  Google Scholar 

  • Singhal D, Curatolo W (2004) Drug polymorphism and dosage form design: a practical perspective. Adv Drug Deliv Rev 56:335–347

    CAS  PubMed  Google Scholar 

  • Sonoda Y, Hirayama F, Arima H, Uekama K (2004) Effects of 2-Hydroxypropyl-b-cyclodextrin on polymorphic transition of chlorpropamide in various conditions: temperature humidity and moulding pressure. J Incl Phenom Macrocycl Chem 50:73–77

    CAS  Google Scholar 

  • Soto R, Verma V, Rasmuson ÇC (2020) Crystal growth kinetics of a metastable polymorph of tolbutamide in organic solvents. Cryst Growth Des 20:1985–1996

    CAS  Google Scholar 

  • Sun Y, Zhu L, Wu T, Cai T, Gunn EM, Yu L (2012) Stability of amorphous pharmaceutical solids: crystal growth mechanisms and effect of polymer additives. AAPS J 14:380–388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi Y, Nakashima K, Ishihara T, Nakagawa H, Sugimoto I (1985) Polymorphism of Fostedil: chracterization and polymophic change by mechanical treatments. Drug Dev Ind Pharm 11:1543–1563

    CAS  Google Scholar 

  • Takeuchi H, Nagira S, Yamamoto H, Kawashima Y (2004) Solid dispersion particles of tolbutamide prepared with fine silica particles by the spray-drying method. Powder Technol 141:187–195

    CAS  Google Scholar 

  • Takeuchi H, Nagira S, Yamamoto H, Kawashima Y (2005) Solid dispersion particles of amorphous indomethacin with fine porous silica particles by using spray-drying method. Int J Pharm 293:155–164

    CAS  PubMed  Google Scholar 

  • Tan D, Loots L, Friščić T (2016) Towards medicinal mechanochemistry: evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs). Chem Commun 52:7760–7781

    CAS  Google Scholar 

  • Taylor LS, Zografi G (1998) The quantitative analysis of crystallinity using FT-Raman spectroscopy. Pharm Res 15:755–761

    CAS  PubMed  Google Scholar 

  • Thakral NK, Mohapatra S, Stephenson GA, Suryanarayanan R (2014) Compression-induced crystallization of amorphous indomethacin in tablets: characterization of spatial heterogeneity by two-dimensional X-ray diffractometry. Mol Pharm 12:253–263

    PubMed  Google Scholar 

  • Thirunahari S, Aitipamula S, Chow PS, Tan RB (2010) Conformational polymorphism of tolbutamide: a structural, spectroscopic, and thermodynamic characterization of Burger’s forms I-IV. J Pharm Sci 99:2975–2990

    CAS  PubMed  Google Scholar 

  • Trasi NS, Byrn SR (2012) Mechanically induced amorphization of drugs: a study of the thermal behavior of cryomilled compounds. AAPS PharmSciTech 13:772–784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tudor AM, Church SJ, Hendra PJ, Davies MC, Melia CD (1993) The qualitative and quantitative analysis of chlorpropamide polymorphic mixtures by near-infrared Fourier transform Raman spectroscopy. Pharm Res 10:1772–1776

    CAS  PubMed  Google Scholar 

  • Ueda H, Nambu N, Nagai T (1984) Dissolution behavior of chlorpropamide polymorphs. Chem Pharm Bull 32:244–250

    CAS  Google Scholar 

  • Umeda T, Ohnishi N, Yokoyama T, Kuroda T, Kita Y, Kuroda K, Tatsumi E, Matsuda Y (1985) A kinetic study on the isothermal transition of polymorphic forms of tolbutamide and mefenamic acid in the solid state at high temperatures. Chem Pharm Bull 33:2073–2078

    CAS  Google Scholar 

  • Wahlberg N, Ciochon P, Petricek V, Madsen AÚ (2014) Polymorph stability prediction: on the importance of accurate structures: a case study of pyrazinamide. Cryst Growth Des 14:381–388

    CAS  Google Scholar 

  • Wang K, Sun CC (2019) Crystal growth of celecoxib from amorphous state: polymorphism, growth mechanism, and kinetics. Cryst Growth Des 19:3592–3600

    CAS  Google Scholar 

  • Wasicki J, Kozlenko D, Pankov S, Bilski P, Pajzderska A, Hancock B, Medek A, Nawrocik W, Savenko B (2009) Search for polymorphic phase transformations in chlorpropamide form-A at high pressures. J Pharm Sci 98:1426–1437

    CAS  PubMed  Google Scholar 

  • Weber Brun G, Martin A, Cassel E, Vargas RMRF, MaJ C (2012) Crystallization of caffeine by supercritical antisolvent (SAS) process: analysis of process parameters and control of polymorphism. Cryst Growth Des 12:1943–1951

    CAS  Google Scholar 

  • Wildfong PL, Morley NA, Moore MD, Morris KR (2005) Quantitative determination of polymorphic composition in intact compacts by parallel-beam X-ray powder diffractometry II: data correction for analysis of phase transformations as a function of pressure. J Pharm Biomed Anal 39:1–7

    CAS  PubMed  Google Scholar 

  • Wildfong PL, Morris KR, Anderson CA, Short SM (2007) Demonstration of a shear-based solid-state phase transformation in a small molecular organic system: chlorpropamide. J Pharm Sci 96:1100–1113

    CAS  PubMed  Google Scholar 

  • Willart J, Descamps M (2008) Solid state amorphization of pharmaceuticals. Mol Pharm 5:905–920

    CAS  PubMed  Google Scholar 

  • Willart J-F, Carpentier L, Danède F, Descamps M (2012) Solid-state vitrification of crystalline griseofulvin by mechanical milling. J Pharm Sci 101:1570–1577

    CAS  PubMed  Google Scholar 

  • Wu H, White M, Khan MA (2011) Quality-by-Design (QbD): an integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and process design space development. Int J Pharm 405:63–78

    CAS  PubMed  Google Scholar 

  • Yamamoto H (1968) 1-Acyl-indoles. II. A new syntheses of 1-(p-chlorobenzoyl)-5-methoxy-3-indolylacetic acid and its polymorphism. Chem Pharm Bull 16:17–19

    CAS  Google Scholar 

  • Yoshioka S, Aso Y (2007) Correlations between molecular mobility and chemical stability during storage of amorphous pharmaceuticals. J Pharm Sci 96:960–981

    CAS  PubMed  Google Scholar 

  • Yoshioka M, Hancock BC, Zografi G (1994) Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J Pharm Sci 83:1700–1705

    CAS  PubMed  Google Scholar 

  • Yu L (1995) Inferring thermodynamic stability relationship of polymorphs from melting data. J Pharm Sci 84:966–974

    CAS  PubMed  Google Scholar 

  • Yu L, Reutzel SM, Stephenson GA (1998) Physical characterization of polymorphic drugs: an integrated characterization strategy. Pharm Sci Technol Today 1:118–127

    CAS  Google Scholar 

  • Zallen R (2008) The physics of amorphous solids. Wiley, New York

    Google Scholar 

  • Zeng L, Rasmuson ÇC, Svärd M (2020) Solubility of two polymorphs of tolbutamide in n-propanol: comparison of methods. J Pharm Sci 109:3021–3026

    CAS  PubMed  Google Scholar 

  • Zhang GG, Law D, Schmitt EA, Qiu Y (2004) Phase transformation considerations during process development and manufacture of solid oral dosage forms. Adv Drug Deliv Rev 56:371–390

    CAS  PubMed  Google Scholar 

  • Zhang J, Wu Y, Liu A, Li W, Han Y (2014) Mechanistic insight into the selective crystallization of the metastable polymorph of tolbutamide in ethanol–water solution. RSC Adv 4:21599–21607

    CAS  Google Scholar 

  • Zhang T, Wang L, Bao Y, Yang Q, Zhou L, Hao H, Xie C (2018) Confirmation of more stable polymorphic form of etoricoxib at room temperature. J Pharm Sci 107:1903–1910

    CAS  PubMed  Google Scholar 

  • Zhou D, Zhang GG, Law D, Grant DJ, Schmitt EA (2002) Physical stability of amorphous pharmaceuticals: importance of configurational thermodynamic quantities and molecular mobility. J Pharm Sci 91:1863–1872

    CAS  PubMed  Google Scholar 

  • Zhu L, Jona J, Nagapudi K, Wu T (2010) Fast surface crystallization of amorphous griseofulvin below T g. Pharm Res 27:1558–1567

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (2016R1A6A1A03007648). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C4002166). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2020R1I1A1A01074378). We would like to thank Eunseo Kang and Yerin Oh for helping search for literature with this review paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Tony Zhou or Min-Soo Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H., Kim, JS., Hong, S. et al. Tableting process-induced solid-state polymorphic transition. J. Pharm. Investig. 52, 175–194 (2022). https://doi.org/10.1007/s40005-021-00556-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-021-00556-6

Keywords

Navigation