Skip to main content

Pharmaceutical Solid-State Characterisation Techniques

  • Chapter
  • First Online:
Engineering Crystallography: From Molecule to Crystal to Functional Form

Abstract

The solid state of a pharmaceutical material impacts on every aspect of its formulation; from solubility and thermodynamic stability to tabletability and flowability. Due to this fundamental connection characterising the solid state is key to providing the information necessary to reduce possible future manufacturing or formulation issues, which critically cuts drug product development costs and time. In this chapter a summary of the importance of the solid state and solid form screening in the pharmaceutical industry is presented. This is followed by an introduction to some of the solid state characterisation techniques routinely utilised in the pharmaceutical industry together with examples of the information provided by each.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fed. Reg. (2005) 70, 134

    Google Scholar 

  2. Massa T (2003) Summary of FDA/PQRI Workshop. at the ACPS Manufacturing Subcommittee 17 Sept

    Google Scholar 

  3. Woodcock J (2004) The concept of pharmaceutical quality. Am Pharm Rev 7(6):10–15

    Google Scholar 

  4. Byrn SR, Pfeiffer RR, Stowell JG (1999) Solid state chemistry of drugs, 2nd edn. Press, SSCI

    Google Scholar 

  5. Docherty R, Jones W (1997) Organic Molecular Solids: Properties and Applications. CRC Press: Boca Raton ch 3

    Google Scholar 

  6. Etter MC (1990) Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res 23(4):120–126

    Article  CAS  Google Scholar 

  7. Desiraju GR (1997) The crystal as a Supramolecular entity. Wiley, Chichester

    Google Scholar 

  8. Roberts KJ, Docherty R, Taylor S (2011) Pharmaceutical Process Development: Current Chemical and Engineering Challenges. Royal Society of Chemistry ch. 13

    Google Scholar 

  9. Haleblian J, McCrone WC (1969) Pharmaceutical applications of polymorphism. J Pharm Sci 58:911–929

    Article  CAS  Google Scholar 

  10. Bauer J, Spanton S, Henry R, Quick J, Dziki W, Porter W, Morris J (2001) Ritonavir: an extraordinary example of conformational polymorphism. Pharm Res 18(6):859–866

    Article  CAS  Google Scholar 

  11. Ostwald W (1897) Studien über die Bildung und Umwandlung fester Körper. Z Phys Chem 22:289–330

    CAS  Google Scholar 

  12. Ostwald W (1899) Grundriss der allgemeinen Chemie. W. Engelmann, Leipzig

    Google Scholar 

  13. Ostwald W (1900) Uber die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflachenspannung fester Korper. Z Phys Chem 34:495–503

    Google Scholar 

  14. Berge SM, Bighley LD, Monkhouse DC (1977) Pharmaceutical salts. J Pharm Sci 66:1–19

    Article  CAS  Google Scholar 

  15. Brittain HG (1995) Physical characterization of pharmaceutical solids. Dekker, New York

    Book  Google Scholar 

  16. Le Chatelier H (1887) C R Acad Sci Paris, 104:1443–1446

    Google Scholar 

  17. Le Chatelier H (1887) De l'action de la chaleur sur les argiles. Bull Soc Fr Minéral Cristallogr 10:204–211

    Google Scholar 

  18. Roberts-Austen WC (1899) Report 5. Proc Inst Mech Eng:35–102

    Google Scholar 

  19. Gabbott P (2008) Principles and applications of thermal analysis. Wiley, Oxford

    Book  Google Scholar 

  20. Clas SD, Dalton CR, Hancock BC (1999) Differential scanning calorimetry: applications in drug development. PSTT 2(8):311–320

    CAS  Google Scholar 

  21. Giron D (1995) Thermal analysis and calorimetric methods in the characterization of polymorphs and solvates. Thermochim Acta 248:1–59

    Article  CAS  Google Scholar 

  22. Giron D, Goldbronn C (1995) Place of DSC purity analysis in pharmaceutical development. J Therm Anal 44:217–251

    Article  CAS  Google Scholar 

  23. Van Rompay J (1986) Purity determination and evaluation of new drug substances. J Pharm Biomed Anal 4:725–732

    Article  Google Scholar 

  24. Mura P, Manderioli A, Bramanti G, Furlanetto S, Pinzauti S (1995) Utilization of differential scanning calorimetry as a screening technique to determine the compatibility of ketoprofen with excipients. Int J Pharm 119:71–79

    Article  CAS  Google Scholar 

  25. Durig T, Fassihi AR (1993) Identification of stabilization effects of excipient-drug interactions in solid dosage form design. Int J Pharm 97:161–170

    Article  CAS  Google Scholar 

  26. Mura P, Faucci MT, Manderioli A, Furlanetto S, Pinzauti S (1998) Thermal analysis as a screening technique in preformulation studies of picotamide solid dosage forms. Drug Dev Ind Pharm 24:747–756

    Article  CAS  Google Scholar 

  27. Harris R, Yeung R, Lamont RB, Lancaster RW, Lynn SM, Staniforth SE (1997) Polymorphism in a novel anti-viral agent: lamivudine. J Chem Soc Perkin Trans 2:2653–2654

    Article  Google Scholar 

  28. Burger A, Henck J, Hetz S, Rollinger J, Weissnicht A, Stottner H (2000) Energy/temperature diagram and compression behaviour of the polymorphs of D-mannitol. J Pharm Sci 4:457–468

    Article  Google Scholar 

  29. Griesser U, Burger A, Mereiter K (1997) The polymorphic drug substances of the European pharmacopoeia. Part 9. Physicochemical properties and crystal structure of acetazolamide crystal forms. J Pharm Sci 86(3):352–358

    Article  CAS  Google Scholar 

  30. Vitez IM (2004) Utilization of DSC for pharmaceutical crystal form quantitation. J Therm Anal Calorim 78(1):33–45

    Article  CAS  Google Scholar 

  31. Galwey A, Craig D (2007) Thermogravimetric analysis: basic principles. In: Craig D, Reading M (eds) Thermal analysis of pharmaceuticals. CRC Press, Boca Raton/London/New York

    Google Scholar 

  32. Han J, Suryanarayanan R (1999) A method for the rapid evaluation of the physical stability of pharmaceutical hydrates. Thermochim Acta 329:163–170

    Article  CAS  Google Scholar 

  33. Schmidt AC, Schwarz I (2006) Int J Pharm 320:4–13

    Article  CAS  Google Scholar 

  34. Mackin L (2002) Int J Pharm 231:227–236

    Article  CAS  Google Scholar 

  35. Chiou WL, Kyle J (1979) Differential thermal, solubility and aging studies on various sources of digoxin and digitoxin powder: biopharmaceutical implications. J Pharm Sci 68(10):1224–1229

    Article  CAS  Google Scholar 

  36. Ward GH, Schultz RK (1995) Process induced crystallinity changes in albuterol sulfate and its effect on powder physical stability. Pharm Res 12(5):773–779

    Article  CAS  Google Scholar 

  37. Saleki-Gerhardt A, Ahlneck C, Zografi G (1994) Assessment of disorder in crystalline solids. Int J Pharm 101:237–247

    Article  CAS  Google Scholar 

  38. Azo Materials, Dynamic vapour sorption for determination of hydrate formation and loss. http://www.azom.com/article.aspx?ArticleID=5182. Accessed May 2016

  39. Khankari RK, Grant DJW (1995) Pharmaceutical hydrates. Thermochim Acta 248:61–79

    Article  CAS  Google Scholar 

  40. Larkin P (2011) Infrared and Raman spectroscopy; principles and spectral interpretation. 1st Ed Elsevier

    Google Scholar 

  41. Turner TD (2015) PhD thesis, Molecular self-assembly, nucleation kinetics and cluster formation associated with solution crystallisation. School of chemical and process engineering University of Leeds

    Google Scholar 

  42. Bellamy L (1980) The infrared spectra of complex molecules. 2:3rd Ed Springer

    Google Scholar 

  43. Davies MM, Sutherland GBBM (1938) The Infra-red absorption of carboxylic acids in solution I. Qualitative features. The Journal of Chemical Physics 6:755–766

    Article  CAS  Google Scholar 

  44. Hadzi D, Sheppard N (1953) The Infra-red absorption bands associated with the COOH and COOD groups in Dimeric carboxylic acids. I. The region from 1500 to 500 cm−1. Proc R Soc London. A Math Phys Sci 216:247–266

    Article  CAS  Google Scholar 

  45. Flett MSG (1962) Intensities of some group characteristic Infra-red bands. Spectrochim Acta 18:1537–1556

    Article  CAS  Google Scholar 

  46. Sinclair RG, McKay AFk Jones RN (1952) The infrared absorption spectra of saturated fatty acids and esters. J Am Chem Soc 74:2570–2575

    Article  CAS  Google Scholar 

  47. RJK D, Dent GK, RKK M, Parveen S (2006) Concerning the relationship between structural and growth synthons in crystal nucleation: solution and crystal chemistry of carboxylic acids as revealed through IR spectroscopy. Cryst Growth Des 6:1788–1796

    Article  Google Scholar 

  48. Chan KLA et al (2004) Polymorphism and devitrification of nifedipine under controlled humidity: a combined FT-Raman, IR and Raman microscopic investigation J. Raman Spectrosc 35(5):353–359

    Article  CAS  Google Scholar 

  49. Tudor AM, Melia CD, Binns JS, Hendra PJ, Church S, Davies MC (1990) The application of Fourier-transform Raman spectroscopy to the analysis of pharmaceuticals and biomaterials. J Pharm Biomed Anal 8(8-12):717–720

    Article  CAS  Google Scholar 

  50. Hendra PJ (1993) Industrial value of Fourier transform Raman spectroscopy. Vib Spectrosc 5(1):25–32

    Article  CAS  Google Scholar 

  51. Compton DA, Compton SV (1991) Examination of packaged consumer goods by using FT-Raman spectrometry. Appl Spectrosc 45(10):1587–1589

    Article  CAS  Google Scholar 

  52. Kwokal A, Nguyen TTH, Roberts KJ (2009) Surface adsorbed templates for directing the crystal growth of Entacapone as monitored using process analytical techniques. Cryst Growth Des 9(10):4324–4334

    Article  CAS  Google Scholar 

  53. Findlay WP, Bugay DE (1998) Utilization of Fourier transform-Raman spectroscopy for the study of pharmaceutical crystal forms. J Pharm Biomed Anal 16(6):921–930

    Article  CAS  Google Scholar 

  54. Bragg WH, Bragg WL (1913) The reflection of X-rays by crystals. Proc R Soc Lond A 88(605):428–438

    Article  CAS  Google Scholar 

  55. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice-Hall, International

    Google Scholar 

  56. Klug HP, Alexander LE (1974) X-ray diffraction procedure for polycrystalline and amorphous materials, 2nd edn. Wiley, New York

    Google Scholar 

  57. Chikhaliaa V, Forbes RT, Storey RA, Ticehurst M (2006) The effect of crystal morphology and mill type on milling induced crystal disorder Eur. J Pharm Sci 27(1):19–26

    Google Scholar 

  58. Haisa M, Kashino S, Kawai R, Maeda H (1976) The monoclinic form of p-Hydroxyacetanilide. Acta Cryst B32:1283–1285

    Article  CAS  Google Scholar 

  59. Singh TP, Bhat TN, Vijayan M (1973) Crystallization and crystal data of acetoaminophen and metamizol. Curr Sci 42:384

    CAS  Google Scholar 

  60. Usmani OS, Biddiscombe MF, Barnes PJ (2005) Regional lung deposition and bronchodilator response as a function of beta(2)-agonist particle size. Am J Respir Crit Care Med 172(12):1497–1504

    Article  Google Scholar 

  61. Shekunov BY, Feeley JC, Chow AH, Tong HHY, York P (2003) Aerosolisation behaviour of micronised and supercritically-processed powders. J Aerosol Sci 34:553–568

    Article  CAS  Google Scholar 

  62. Telko MJ, Hickey AJ (2005) Dry powder inhaler formulation. Respir Care 50(9):1209–1227

    Google Scholar 

  63. Begat P, Morton DAV, Staniforth JN, Price R (2004) The cohesive-adhesive balances in dry powder inhaler formulations. II: influence on fine particle delivery characteristics. Pharm Res 21(10):1826–1833

    Article  CAS  Google Scholar 

  64. Adi H, Larson I, Chiou H, Young P, Traini D, Stewart P (2006) Agglomerate strength and dispersion of salmeterol xinafoate from powder mixtures for inhalation. Pharm Res 23(11):2556–2565

    Article  CAS  Google Scholar 

  65. Ghoroi C, Han X, To D, Jallo L, Gurumurthy L, Davé RN (2012) Dispersion of fine and ultrafine powders through surface modification and rapid expansion. Chem Eng Sci 85:11–24

    Article  Google Scholar 

  66. Chiou H, Chan HK, Heng D, Prud’homme RK, Raper JA (2008) A novel production method for inhalable cyclosporine a powders by confined liquid impinging jet precipitation. J Aerosol Sci 39:500–509

    Article  CAS  Google Scholar 

  67. Kaye RS, Purewal TS, Alpar HO (2009) Simultaneously manufactured nanoin- micro (SIMANIM) particles for dry-powder modified-release delivery of antibodies. J Pharm Sci 98:4055–4068

    Article  CAS  Google Scholar 

  68. Jaffari S et al (2013) Rapid characterisation of the inherent dispersibility of respirable powders using dry dispersion laser diffraction. Int J Pharm 447:124–131

    Article  CAS  Google Scholar 

  69. Nguyen TTH, Hammond RB, Roberts KJ, Marziano I, Nichols G (2014) Precision measurement of the growth rate and mechanism of ibuprofen {001} and {011} as a function of crystallization environment. Cryst Eng Comm 16:4568–4586

    Article  CAS  Google Scholar 

  70. Malvern Instruments; details http://www.malvern.com/en/products/product-range/morphologi-range/morphologi-g3/

  71. Turner TD, Corzo DMC, Toroz D, Curtis A, Dos Santos MM, Hammond RB, Lai X, Roberts KJ (2015) The influence of solution environment on the nucleation kinetics and crystallisability of para-aminobenzoic acid. Phys Chem Chem Phys 18:27507–27520

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Turner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Turner, T.D., Halfpenny, P.J., Roberts, K.J. (2017). Pharmaceutical Solid-State Characterisation Techniques. In: Roberts, K., Docherty, R., Tamura, R. (eds) Engineering Crystallography: From Molecule to Crystal to Functional Form. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1117-1_23

Download citation

Publish with us

Policies and ethics