Skip to main content

Advertisement

Log in

Tumor spheroid-based microtumor models for preclinical evaluation of anticancer nanomedicines

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

Cancer nanomedicines (NMs) have emerged as potential anticancer therapeutics with advantages of tumor-targeting drug delivery for improved efficacy against human solid tumors. Despite promising data obtained in preclinical studies, few clinical trials have demonstrated successful results. The failure in the bench-to-bedside translation of NM efficacy may be related to the lack of clinical relevance of the tumor models used for preclinical screening and evaluation. Consideration of the pathophysiological factors that reduce drug distribution and activity in solid tumor tissues should be part of the selection of models used in preclinical evaluations of NMs.

Area covered

We briefly describe the fundamental concepts of NM targeting strategies and current issues related to their preclinical evaluation. We then provide an overview of the conventional and three-dimensional (3D) models utilized in preclinical evaluations of the target-site pharmacokinetics and pharmacodynamics of anticancer NMs. We further describe factors of the tumor microenvironment (TME) in solid tumors that significantly hinder the tissue distribution and therapeutic efficacy of anticancer drugs. Moreover, we focus on tumor spheroid (TS)-based microtumor models in terms of how they recapitulate TME conditions to represent a promising in vitro 3D tumor model for preclinical evaluations of anticancer NMs. Current state-of-the-art TS and TS-based microtumor generation methods are also reviewed.

Expert opinion

TS-based microtumors are promising in vitro models for the preclinical evaluation of NMs. The use of microtumor models is strongly recommended as the method of choice for the screening and evaluation of NMs with promising clinical efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Abd AM, Lee JH, Kim SY, Kun N, Kuh HJ (2008) Novel application of multicellular layers culture for in situ evaluation of cytotoxicity and penetration of paclitaxel. Cancer Sci 99:423–431

    Article  CAS  PubMed  Google Scholar 

  • Alessandri K, Sarangi BR, Gurchenkov VV, Sinha B, Kiessling TR et al (2013) Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro. Proc Natl Acad Sci USA 110:14843–14848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aung A, Kumar V, Theprungsirikul J, Davey SK, Varghese S (2020) An engineered tumor-on-a-chip device with breast cancer-Immune cell interactions for assessing T-cell recruitment. Cancer Res 80:263–275

    Article  CAS  PubMed  Google Scholar 

  • Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125:5591–5596

    Article  CAS  PubMed  Google Scholar 

  • Barenholz Y (2012) Doxil®–the first FDA-approved nano-drug: lessons learned. J Control Release 160:117–134

    Article  CAS  PubMed  Google Scholar 

  • Battistini L, Burreddu P, Sartori A, Arosio D, Manzoni L et al (2014) Enhancement of the uptake and cytotoxic activity of doxorubicin in cancer cells by novel cRGD-semipeptide-anchoring liposomes. Mo Pharm 11:2280–2293

    Article  CAS  Google Scholar 

  • Brown JM (2007) Tumor hypoxia in cancer therapy. Methods Enzymol 435:297–321

    CAS  PubMed  Google Scholar 

  • Carlsson J, Acker H (1988) Relations between pH, oxygen partial pressure and growth in cultured cell spheroids. Int J Cancer 42:715–720

    Article  CAS  PubMed  Google Scholar 

  • Chabner BA, Roberts TG (2005) Chemotherapy and the war on cancer. Nat Rev Cancer 5:65–72

    Article  CAS  PubMed  Google Scholar 

  • Chauhan VP, Jain RK (2013) Strategies for advancing cancer nanomedicine. Nat Mater 12:958–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan VP, Stylianopoulos T, Boucher Y, Jain RK (2011) Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu Rev Chem Biomol Eng 2:281–298

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Song Y, Du W, Gong L, Chang H et al (2019) Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 26:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cho C-Y, Chiang T-H, Hsieh L-H, Yang W-Y, Hsu H-H et al (2020) Development of a novel hanging drop platform for engineering controllable 3D microenvironments. Front Cell Dev Biol 8:327

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi YH, Han HK (2018) Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Investig 48:43–60

    Article  CAS  PubMed  Google Scholar 

  • Choi SY, Lee DW, Song B, Kim SY, Kim HJ et al (2020) A rapid quantification of invasive phenotype in head and neck squamous cell carcinoma: a novel 3D pillar array system. Oral Oncol 108:104807

    Article  CAS  PubMed  Google Scholar 

  • Costa EC, de Melo-Diogo D, Moreira AF, Carvalho MP, Correia IJ (2018) Spheroids formation on non-adhesive surfaces by liquid overlay technique: considerations and practical approaches. Biotechnol J 13:1700417

    Article  CAS  Google Scholar 

  • Cui X, Hartanto Y, Zhang H (2017) Advances in multicellular spheroids formation. J R Soc Interface 14:20160877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dewhirst MW, Secomb TW (2017) Transport of drugs from blood vessels to tumour tissue. Nat Rev Cancer 17:738–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driehuis E, Kretzschmar K, Clevers H (2020) Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc 15:3380–3409

    Article  CAS  PubMed  Google Scholar 

  • Endo H, Inoue M (2019) Dormancy in cancer. Cancer Sci 110:474–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estrada MF, Rebelo SP, Davies EJ, Pinto MT, Pereira H et al (2016) Modelling the tumour microenvironment in long-term microencapsulated 3D co-cultures recapitulates phenotypic features of disease progression. Biomaterials 78:50–61

    Article  CAS  PubMed  Google Scholar 

  • Fell HB, Robison R (1929) The growth, development and phosphatase activity of embryonic avian femora and limb-buds cultivated in vitro. Biochem J 23(767–784):5

    PubMed  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Foty R (2011) A simple hanging drop cell culture protocol for generation of 3D spheroids. J vis Exp. https://doi.org/10.3791/2720

    Article  PubMed  PubMed Central  Google Scholar 

  • Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195–4200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gencoglu MF, Barney LE, Hall CL, Brooks EA, Schwartz AD et al (2018) Comparative study of multicellular tumor spheroid formation methods and implications for drug screening. ACS Biomater Sci Eng 4:410–420

    Article  CAS  PubMed  Google Scholar 

  • Gould SE, Junttila MR, de Sauvage FJ (2015) Translational value of mouse models in oncology drug development. Nat Med 21:431–439

    Article  CAS  PubMed  Google Scholar 

  • Guyton AC, Prather J, Scheel K, McGehee J (1966) Interstitial fluid pressure. IV. Its effect on fluid movement through the capillary wall. Circ Res 19:1022–1030

    Article  CAS  PubMed  Google Scholar 

  • Hagendoorn J, Tong R, Fukumura D, Lin Q, Lobo J et al (2006) Onset of abnormal blood and lymphatic vessel function and interstitial hypertension in early stages of carcinogenesis. Cancer Res 66:3360–3364

    Article  CAS  PubMed  Google Scholar 

  • He H, Liu L, Morin EE, Liu M, Schwendeman A (2019) Survey of clinical translation of cancer nanomedicines—lessons learned from successes and failures. Acc Chem Res 52:2445–2461

    Article  CAS  PubMed  Google Scholar 

  • Henke E, Nandigama R, Ergün S (2020) Extracellular matrix in the tumor microenvironment and its Impact on cancer therapy. Front Mol Biosci 6:160–160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herrmann D, Conway JRW, Vennin C, Magenau A, Hughes WE et al (2014) Three-dimensional cancer models mimic cell–matrix interactions in the tumour microenvironment. Carcinogenesis 35:1671–1679

    Article  CAS  PubMed  Google Scholar 

  • Holle AW, Young JL, Spatz JP (2016) In vitro cancer cell–ECM interactions inform in vivo cancer treatment. Adv Drug Deliv Rev 97:270–279

    Article  CAS  PubMed  Google Scholar 

  • Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726

    Article  CAS  PubMed  Google Scholar 

  • Hou S, Jin W, Xiao W, Deng B, Wu D et al (2019) Integrin alpha5 promotes migration and cisplatin resistance in esophageal squamous cell carcinoma cells. Am J Cancer Res 9:2774–2788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YL, Ma Y, Wu C, Shiau C, Segall JE et al (2020) Tumor spheroids under perfusion within a 3D microfluidic platform reveal critical roles of cell-cell adhesion in tumor invasion. Sci Rep 10:9648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hulikova A, Vaughan-Jones RD, Swietach P (2011) Dual role of CO2/HCO3(-) buffer in the regulation of intracellular pH of three-dimensional tumor growths. J Biol Chem 286:13815–13826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang HJ, Oh MS, Lee DW, Kuh HJ (2019) Multiplex quantitative analysis of stroma-mediated cancer cell invasion, matrix remodeling, and drug response in a 3D co-culture model of pancreatic tumor spheroids and stellate cells. J Exp Clin Cancer Res 38:258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ioannidis JPA, Kim BYS, Trounson A (2018) How to design preclinical studies in nanomedicine and cell therapy to maximize the prospects of clinical translation. Nat Biomed Eng 2:797–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaganathan H, Gage J, Leonard F, Srinivasan S, Souza GR et al (2014) Three-dimensional in vitro co-culture model of breast tumor using magnetic levitation. Sci Rep 4:6468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol 31:2205–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong SY, Lee JH, Shin Y, Chung S, Kuh HJ (2016) Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment. PLoS ONE 11:e0159013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jing X, Yang F, Shao C, Wei K, Xie M et al (2019) Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer 18:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Joyce MH, Lu C, James ER, Hegab R, Allen SC et al (2018) Phenotypic basis for matrix stiffness-dependent chemoresistance of breast cancer cells to doxorubicin. Front Oncol 8:337

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang A, Park J, Ju J, Jeong GS, Lee SH (2014) Cell encapsulation via microtechnologies. Biomaterials 35:2651–2663

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Lee DW, Hwang HJ, Yeon SE, Lee MY et al (2016) Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids. Lab Chip 16:2265–2276

    Article  CAS  PubMed  Google Scholar 

  • Kapalczynska M, Kolenda T, Przybyla W, Zajaczkowska M, Teresiak A et al (2018) 2D and 3D cell cultures - a comparison of different types of cancer cell cultures. Arch Med Sci 14:910–919

    PubMed  Google Scholar 

  • Khawar IA, Kim JH, Kuh HJ (2015) Improving drug delivery to solid tumors: priming the tumor microenvironment. J Control Release 201:78–89

    Article  CAS  PubMed  Google Scholar 

  • Khawar IA, Park JK, Jung ES, Lee MA, Chang S et al (2018) Three dimensional mixed-cell spheroids mimic stroma-mediated chemoresistance and invasive migration in hepatocellular carcinoma. Neoplasia 20:800–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SK, Jang SD, Kim H, Chung S, Park JK et al (2020) Phenotypic heterogeneity and plasticity of cancer cell migration in a pancreatic tumor three-dimensional culture model. Cancers (basel) 12:1305

    Article  CAS  Google Scholar 

  • Kimlin LC, Casagrande G, Virador VM (2013) In vitro three-dimensional (3D) models in cancer research: an update. Mol Carcinog 52:167–182

    Article  PubMed  CAS  Google Scholar 

  • Ko J, Ahn J, Kim S, Lee Y, Lee J et al (2019) Tumor spheroid-on-a-chip: a standardized microfluidic culture platform for investigating tumor angiogenesis. Lab Chip 19:2822–2833

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, da No Y, Kim SH, Ryoo JH, Wong SF et al (2011) Diffusion-mediated in situ alginate encapsulation of cell spheroids using microscale concave well and nanoporous membrane. Lab Chip 11:1168–1173

    Article  CAS  PubMed  Google Scholar 

  • Lee DW, Choi YS, Seo YJ, Lee MY, Jeon SY et al (2014) High-throughput screening (HTS) of anticancer drug efficacy on a micropillar/microwell chip platform. Anal Chem 86:535–542

    Article  CAS  PubMed  Google Scholar 

  • Lee DW, Lee MY, Ku B, Nam DH (2015) Automatic 3D cell analysis in high-throughput microarray using micropillar and microwell chips. J Biomol Screen 20:1178–1184

    Article  PubMed  Google Scholar 

  • Lee DW, Kang J, Hwang HJ, Oh M-S, Shin BC et al (2018a) Pitch-tunable pillar arrays for high-throughput culture and immunohistological analysis of tumor spheroids. RSC Adv 8:4494–4502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Kim SK, Khawar IA, Jeong SY, Chung S et al (2018b) Microfluidic co-culture of pancreatic tumor spheroids with stellate cells as a novel 3D model for investigation of stroma-mediated cell motility and drug resistance. J Exp Clin Cancer Res 37:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee JM, Park DY, Yang L, Kim E-J, Ahrberg CD et al (2018c) Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening. Sci Rep 8:17145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee SY, Doh I, Lee DW (2019) A high throughput apoptosis assay using 3D cultured cells. Molecules 24:3362

    Article  CAS  PubMed Central  Google Scholar 

  • Levinger I, Ventura Y, Vago R (2014) Chapter Nine - Life is three dimensional—as in vitro cancer cultures should be. In: Tew KD, Fisher PB (eds) Advances in cancer research, vol 121. Academic Press, Cambridge, pp 383–414

    Google Scholar 

  • Lin RZ, Chang HY (2008) Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J 3:1172–1184

    Article  CAS  PubMed  Google Scholar 

  • Longati P, Jia X, Eimer J, Wagman A, Witt MR et al (2013) 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer 13:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X-L, Sun Y-F, Wang B-L, Shen M-N, Zhou Y et al (2019) Sphere-forming culture enriches liver cancer stem cells and reveals stearoyl-CoA desaturase 1 as a potential therapeutic target. BMC Cancer 19:760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  CAS  PubMed  Google Scholar 

  • Mak IW, Evaniew N, Ghert M (2014) Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res 6:114–118

    PubMed  PubMed Central  Google Scholar 

  • Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY (2013) Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 65:1866–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  • Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S (2012) Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release 164:192–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirbagheri M, Adibnia V, Hughes BR, Waldman SD, Banquy X et al (2019) Advanced cell culture platforms: a growing quest for emulating natural tissues. Mater Horiz 6:45–71

    Article  CAS  Google Scholar 

  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA et al (2021) Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 20:101–124

    Article  CAS  PubMed  Google Scholar 

  • Mittler F, Obeïd P, Rulina AV, Haguet V, Gidrol X et al (2017) High-Content Monitoring of drug effects in a 3D spheroid model. Front Oncol 7:293

    Article  PubMed  PubMed Central  Google Scholar 

  • Mó I, Sabino IJ, Melo-Diogo D, Lima-Sousa R, Alves CG et al (2020) The importance of spheroids in analyzing nanomedicine efficacy. Nanomedicine (lond) 15:1513–1525

    Article  CAS  Google Scholar 

  • Nam S, Khawar IA, Park JK, Chang S, Kuh HJ (2019) Cellular context-dependent interaction between cancer and stellate cells in hetero-type multicellular spheroids of pancreatic tumor. Biochem Biophys Res Commun 515:183–189

    Article  CAS  PubMed  Google Scholar 

  • Nath S, Devi GR (2016) Three-dimensional culture systems in cancer research: focus on tumor spheroid model. Pharmacol Ther 163:94–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols JW, Sakurai Y, Harashima H, Bae YH (2017) Nano-sized drug carriers: extravasation, intratumoral distribution, and their modeling. J Control Release 267:31–46

    Article  CAS  PubMed  Google Scholar 

  • Nishida-Aoki N, Gujral TS (2019) Emerging approaches to study cell-cell interactions in tumor microenvironment. Oncotarget 10:785–797

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunes AS, Barros AS, Costa EC, Moreira AF, Correia IJ (2019) 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol Bioeng 116:206–226

    Article  CAS  PubMed  Google Scholar 

  • Oh MS, Khawar IA, Lee DW, Park JK, Kuh HJ (2020) Three-dimensional imaging for multiplex phenotypic analysis of pancreatic microtumors grown on a minipillar array chip. Cancers (basel) 12:3662

    Article  CAS  Google Scholar 

  • Park K (2013) Facing the truth about nanotechnology in drug delivery. ACS Nano 7:7442–7447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce AK, O’Reilly RK (2019) Insights into active targeting of nanoparticles in drug delivery: advances in clinical studies and design considerations for cancer nanomedicine. Bioconjug Chem 30:2300–2311

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Gandhi V (2012) ROS-activated anticancer prodrugs: a new strategy for tumor-specific damage. Ther Deliv 3:823–833

    Article  CAS  PubMed  Google Scholar 

  • Pinto B, Henriques AC, Silva PMA, Bousbaa H (2020) Three-dimensional spheroids as in vitro preclinical models for cancer research. Pharmaceutics 12:1186

    Article  CAS  PubMed Central  Google Scholar 

  • Priwitaningrum DL, Blondé J-BG, Sridhar A, van Baarlen J, Hennink WE et al (2016) Tumor stroma-containing 3D spheroid arrays: A tool to study nanoparticle penetration. J Control Release 244:257–268

    Article  CAS  PubMed  Google Scholar 

  • Raghunand N, Mahoney BP, Gillies RJ (2003) Tumor acidity, ion trapping and chemotherapeutics. II. pH-dependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents. Biochem Pharmacol 66:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Ravizza R, Molteni R, Gariboldi MB, Marras E, Perletti G et al (2009) Effect of HIF-1 modulation on the response of two- and three-dimensional cultures of human colon cancer cells to 5-fluorouracil. Eur J Cancer 45:890–898

    Article  CAS  PubMed  Google Scholar 

  • Rebelo SP, Pinto C, Martins TR, Harrer N, Estrada MF et al (2018) 3D-3-culture: a tool to unveil macrophage plasticity in the tumour microenvironment. Biomaterials 163:185–197

    Article  CAS  PubMed  Google Scholar 

  • Rice AJ, Cortes E, Lachowski D, Cheung BCH, Karim SA et al (2017) Matrix stiffness induces epithelial-mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis 6:e352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues J, Heinrich MA, Teixeira LM, Prakash J (2021) 3D In Vitro Model (R)evolution: Unveiling Tumor-Stroma Interactions. Trends Cancer 7:249–264

    Article  CAS  PubMed  Google Scholar 

  • Rossi G, Manfrin A, Lutolf MP (2018) Progress and potential in organoid research. Nat Rev Genet 19:671–687

    Article  CAS  PubMed  Google Scholar 

  • Safra T, Muggia F, Jeffers S, Tsao-Wei DD, Groshen S et al (2000) Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol 11:1029–1033

    Article  CAS  PubMed  Google Scholar 

  • Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M et al (2020) A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 20:174–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarisozen C, Abouzeid AH, Torchilin VP (2014) The effect of co-delivery of paclitaxel and curcumin by transferrin-targeted PEG-PE-based mixed micelles on resistant ovarian cancer in 3-D spheroids and in vivo tumors. Eur J Pharm Biopharm 88:539–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired aesistance to cancer immunotherapy. Cell 168:707–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK et al (2012) Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat Protoc 7:1247–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sontheimer-Phelps A, Hassell BA, Ingber DE (2019) Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer 19:65–81

    Article  CAS  PubMed  Google Scholar 

  • Su S, Kang M, P, (2020) Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics 12:837

    Article  CAS  PubMed Central  Google Scholar 

  • Suggitt M, Bibby MC (2005) 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin Cancer Res 11:971–981

    CAS  PubMed  Google Scholar 

  • Swietach P, Hulikova A, Patiar S, Vaughan-Jones RD, Harris AL (2012) Importance of intracellular pH in determining the uptake and efficacy of the weakly basic chemotherapeutic drug, doxorubicin. PLoS ONE 7:e35949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sykes EA, Dai Q, Sarsons CD, Chen J, Rocheleau JV et al (2016) Tailoring nanoparticle designs to target cancer based on tumor pathophysiology. Proc Natl Acad Sci USA 113:E1142-1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchoryk A, Taresco V, Argent RH, Ashford M, Gellert PR et al (2019) Penetration and uptake of nanoparticles in 3D tumor spheroids. Bioconjug Chem 30:1371–1384

    Article  CAS  PubMed  Google Scholar 

  • Torras N, García-Díaz M, Fernández-Majada V, Martínez E (2018) Mimicking epithelial tissues in three-dimensional cell culture models. Front Bioeng Biotechnol 6:197

    Article  PubMed  PubMed Central  Google Scholar 

  • Tseng H, Gage JA, Raphael RM, Moore RH, Killian TC et al (2013) Assembly of a three-dimensional multitype bronchiole coculture model using magnetic levitation. Tissue Eng Part C Methods 19:665–675

    Article  CAS  PubMed  Google Scholar 

  • Tseng H, Gage JA, Shen T, Haisler WL, Neeley SK et al (2015) A spheroid toxicity assay using magnetic 3D bioprinting and real-time mobile device-based imaging. Sci Rep 5:13987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tung YC, Hsiao AY, Allen SG, Torisawa YS, Ho M et al (2011) High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136:473–478

    Article  CAS  PubMed  Google Scholar 

  • van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJM et al (2019) Smart cancer nanomedicine. Nat Nanotechnol 14:1007–1017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vinci M, Gowan S, Boxall F, Patterson L, Zimmermann M et al (2012) Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol 10:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  • Ware MJ, Keshishian V, Law JJ, Ho JC, Favela CA et al (2016) Generation of an in vitro 3D PDAC stroma rich spheroid model. Biomaterials 108:129–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks JC, Catalano PJ, Cronin A, Finkelman MD, Mack JW et al (2012) Patients’ expectations about effects of chemotherapy for advanced cancer. N Engl J Med 367:1616–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzel C, Riefke B, Gründemann S, Krebs A, Christian S et al (2014) 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Exp Cell Res 323:131–143

    Article  CAS  PubMed  Google Scholar 

  • Whatley BR, Li X, Zhang N, Wen X (2014) Magnetic-directed patterning of cell spheroids. J Biomed Mater Res A 102:1537–1547

    Article  PubMed  CAS  Google Scholar 

  • Wu LY, Di Carlo D, Lee LP (2008) Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomed Microdevices 10:197–202

    Article  CAS  PubMed  Google Scholar 

  • Wu PH, Opadele AE, Onodera Y, Nam JM (2019) Targeting integrins in cancer nanomedicine: applications in cancer diagnosis and therapy. Cancers (basel) 11:1783

    Article  CAS  Google Scholar 

  • Xin H, Sha X, Jiang X, Zhang W, Chen L et al (2012) Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials 33:8167–8176

    Article  CAS  PubMed  Google Scholar 

  • Youn YS, Bae YH (2018) Perspectives on the past, present, and future of cancer nanomedicine. Adv Drug Deliv Rev 130:3–11

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Dong X, Yap J, Hu J (2020) The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy. J Hematol Oncol 13:113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zanoni M, Piccinini F, Arienti C, Zamagni A, Santi S et al (2016) 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep 6:19103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziolkowska K, Stelmachowska A, Kwapiszewski R, Chudy M, Dybko A et al (2013) Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip. Biosens Bioelectron 40:68–74

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (grant numbers 2019R1A5A2027588 and 2019R1A2B5B02070524).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyo-Jeong Kuh.

Ethics declarations

Conflict of interest

All the authors (I. A. Khawar, T. Gosh, J. K. Park and H. J. Kuh) declare that they have no conflict of interest.

Statement of human and animal rights

This article does not contain any studies or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khawar, I.A., Ghosh, T., Park, J.K. et al. Tumor spheroid-based microtumor models for preclinical evaluation of anticancer nanomedicines. J. Pharm. Investig. 51, 541–553 (2021). https://doi.org/10.1007/s40005-021-00534-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-021-00534-y

Keywords

Navigation