Skip to main content
Log in

Application of conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymers in potential biomedical engineering

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

Biomedical engineering has emerged as a multidisciplinary endeavor. Biomedical engineering includes the development of new devices, processes, and systems in order to advance medical practice and health care. The specialty areas of biomedical engineering are biomaterials and tissue engineering (TE), bioinstrumentation, clinical and rehabilitation engineering.

Area covered

Over the past few decades, conductive polymers have received much attention in many applications. The applications of conductive polymers are in the drug delivery system, in the construction of bioactuators, as well as in the Tissue Engineering field. Composites are produced by combining conductive polymers with other polymers or materials. Modification of conductive polymers can render these polymers to be biodegradable and biocompatible, making them very useful in TE applications.

Expert opinion

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), a biocompatible conductive polymer, is recently being researched, to be used as nano-bio interfaces for medical applications such as nucleic acid detection, controlled release of neuron growth factor, and guided cell growth. This review focuses on the recent advances of conductive polymers, specifically, PEDOT:PSS aiming towards TE, photovoltaic devices and biosensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ashizawa S, Horikawa R, Okuzaki H (2005) Effects of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate). Synth Met 153(1–3):5–8

    CAS  Google Scholar 

  • Ateh D, Navsaria H, Vadgama P (2006) Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface 3(11):741–752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aznar-Cervantes S, Roca MI, Martinez JG, Meseguer-Olmo L, Cenis JL, Moraleda JM, Otero TF (2012) Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry 85:36–43

    CAS  PubMed  Google Scholar 

  • Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater 10(6):2341–2353

    CAS  PubMed  Google Scholar 

  • Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57(1):19–34

    CAS  PubMed  Google Scholar 

  • Bhakta S, Pattanayak DK, Takadama H, Kokubo T, Miller CA, Mirsaneh M, Reaney IM, Brook I, van Noort R, Hatton PV (2010) Prediction of osteoconductive activity of modified potassium fluorrichterite glass-ceramics by immersion in simulated body fluid. J Mater Sci 21(11):2979–2988

    CAS  Google Scholar 

  • Bingger P, Zens M, Woias P (2012) Highly flexible capacitive strain gauge for continuous long-term blood pressure monitoring. Biomed Microdevice 14(3):573–581

    CAS  Google Scholar 

  • Blackwood KA, McKean R, Canton I, Freeman CO, Franklin KL, Cole D, Brook I, Farthing P, Rimmer S, Haycock JW (2008) Development of biodegradable electrospun scaffolds for dermal replacement. Biomaterials 29(21):3091–3104

    CAS  PubMed  Google Scholar 

  • Böttcher-Haberzeth S, Biedermann T, Reichmann E (2010) Tissue engineering of skin. Burns 36(4):450–460

    PubMed  Google Scholar 

  • Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(4):467–479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang HC, Tao S, Sultana N, Lim MM, Khan TH, Ismail AF (2016) Conductive PEDOT:PSS coated polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun membranes: Fabrication and characterization. Mater Sci Eng C 61:396–410

    CAS  Google Scholar 

  • Chen H, Huang J, Yu J, Liu S, Gu P (2011) Electrospun chitosan-graft-poly (ɛ-caprolactone)/poly (ɛ-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Int J Biol Macromol 48(1):13–19

    PubMed  Google Scholar 

  • Chen M, Nilsson D, Kugler T, Berggren M, Remonen T (2002) Electric current rectification by an all-organic electrochemical device. Appl Phys Lett 81(11):2011–2013

    CAS  Google Scholar 

  • Chronakis IS, Grapenson S, Jakob A (2006) Conductive polypyrrole nanofibers via electrospinning: Electrical and morphological properties. Polymer 47(5):1597–1603

    CAS  Google Scholar 

  • Cruz S, Viana J, Dias DH, Rocha L (2014) Pressure sensing platform for health monitoring. In: Medical Measurements and Applications (MeMeA), 2014 IEEE International Symposium on 11–12 June. Lisboa, pp 1–5

  • Daoud WA, Xin JH, Szeto YS (2005) Polyethylenedioxythiophene coatings for humidity, temperature, and strain sensing polyamide fibers. Sens Actuators B 109(2):329–333

    CAS  Google Scholar 

  • Dawson JI, Oreffo ROC (2008) Bridging the regeneration gap: Stem cells, biomaterials and clinical translation in bone tissue engineering. Arch Biochem Biophys 473(2):124–131

    CAS  PubMed  Google Scholar 

  • Draghi L, Resta S, Pirozzolo M, Tanzi M (2005) Microspheres leaching for scaffold porosity control. J Mater Sci 16(12):1093–1097

    CAS  Google Scholar 

  • Fan X, Xu B, Liu S, Cui C, Wang J, Yan F (2016) Transfer-printed PEDOT:PSS electrodes using mild acids for high conductivity and improved stability with application to flexible organic solar cells. ACS Appl Mater Interfaces 8(22):14029–14036

    CAS  PubMed  Google Scholar 

  • Fan X, Xu BG, Wang NX, Wang JZ, Liu SH, Wang H, Yan F (2017) Highly conductive stretchable all-plastic electrodes using a novel dipping-embedded-transfer method for high-performance wearable sensors and semitransparent organic solar cells. Adv Electron Mater 3:1600471

    Google Scholar 

  • Fan X, Wang N, Wang J, Xu B, Yan F (2018a) Highly sensitive, durable and stretchable plastic strain sensors using sandwich structures of PEDOT:PSS and an elastomer. Mater Chem Front 2:355–361

    CAS  Google Scholar 

  • Fan X, Wang NX, Yan F, Wang JZ, Song W, Ge ZY (2018b) A Transfer-printed, stretchable and reliable strain sensor using PEDOT:PSS/Ag NW Hybrid films embedded into elastomers. Adv Mater Technol 3:1800030

    Google Scholar 

  • Fan X, Nie W, Tsai H, Wang N, Huang H, Cheng Y, Wen R, Ma L, Yan F, Xia Y (2019) PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv Sci 6:1900813

    CAS  Google Scholar 

  • Fonder MA, Lazarus GS, Cowan DA, Aronson-Cook B, Kohli AR, Mamelak AJ (2008) Treating the chronic wound: a practical approach to the care of nonhealing wounds and wound care dressings. J Am Acad Dermatol 58(2):185–206

    PubMed  Google Scholar 

  • Gomes ME, Reis RL (2004) Tissue engineering: key elements and some trends. Macromol Biosci 4(8):737–742

    CAS  PubMed  Google Scholar 

  • Griffith LG (2002) Emerging design principles in biomaterials and scaffolds for tissue engineering. Ann N Y Acad Sci 961(1):83–95

    CAS  PubMed  Google Scholar 

  • Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12(7):481–494

    CAS  Google Scholar 

  • Guan G, Yang Z, Qiu L, Sun X, Zhang Z, Ren J, Peng H (2013) Oriented PEDOT: PSS on aligned carbon nanotubes for efficient dye-sensitized solar cells. J Mater Chem A 1(42):13268–13273

    CAS  Google Scholar 

  • Guo Z, Jiang C, Teng C, Ren G, Zhu Y, Jiang L (2014) Sulfur, trace nitrogen and iron codoped hierarchically porous carbon foams as synergistic catalysts for oxygen reduction reaction. ACS Appl Mater Interfaces 6(23):21454–21460

    CAS  PubMed  Google Scholar 

  • Guo Z, Qiao Y, Liu H, Ding C, Zhu Y, Wan M, Jiang L (2012) Self-assembled hierarchical micro/nano-structured PEDOT as an efficient oxygenreduction catalyst over a wide pH range. J Mater Chem 22(33):17153–17158

    CAS  Google Scholar 

  • Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32(8–9):876–921

    CAS  Google Scholar 

  • Heuer HW, Wehrmann R, Kirchmeyer S (2002) Electrochromic Window Based on Conducting Poly(3,4-ethylenedioxythiophene)-Poly(styrene sulfonate). Adv Func Mater 12(2):89–94

    CAS  Google Scholar 

  • Jiang T, Nukavarapu SP, Deng M, Jabbarzadeh E, Kofron MD, Doty SB, Abdel-Fattah WI, Laurencin CT (2010) Chitosan-poly (lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: In vitro degradation and in vivo bone regeneration studies. Acta Biomater 6(9):3457–3470

    CAS  PubMed  Google Scholar 

  • Kara MOP, Frey MW (2014) Effects of solvents on the morphology and conductivity of poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) nanofibers. J Appl Polym Sci 131(11):507–515

    Google Scholar 

  • Karagkiozaki V, Karagiannidis PG, Gioti M, Kavatzikidou P, Georgiou D, Georgaraki E, Logothetidis S (2013) Bioelectronics meets nanomedicine for cardiovascular implants: PEDOT-based nanocoatings for tissue regeneration. Biochim Biophys Acta (BBA). 1830(9):4294–4304

    CAS  PubMed  Google Scholar 

  • Karp JM, Langer R (2007) Development and therapeutic applications of advanced biomaterials. Curr Opin Biotechnol 18(5):454–459

    CAS  PubMed  Google Scholar 

  • Kimtan T, Thupmongkol J, Williams JC, Thongpang S (2014) Printable and transparent micro-electrocorticography (μECoG) for optogenetic applications. In: Engineering in Medicine and Biology Society (EMBC), 2014 36th annual international conference of the IEEE. pp.482–485

  • Kumar S, Kumar S, Srivastava S, Yadav BK, Lee SH, Sharma JG, Doval DC, Malhotra BD (2015) Reduced graphene oxide modified smart conducting paper for Cancer biosensor. Biosens Bioelectron 733:117–122

    Google Scholar 

  • Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492

    CAS  PubMed  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    CAS  Google Scholar 

  • Lari A, Tao S, Sultana N (2016) PEDOT:PSS-containing nanohydroxyapatite/chitosan conductive bionanocomposite scaffold: fabrication and evaluation. J Nanomater 7:1–12

    Google Scholar 

  • Leong MF, Chan WY, Chian KS, Rasheed MZ, Anderson JM (2010) Fabrication and in vitro and in vivo cell infiltration study of a bilayered cryogenic electrospun poly (D, L-lactide) scaffold. J Biomed Mater Res Part A 94(4):1141–1149

    Google Scholar 

  • Li Y, Wang Y, Wu D, Zhang K, Hu Q (2010) A facile approach to construct three-dimensional oriented chitosan scaffolds with in-situ precipitation method. Carbohyd Polym 80(2):408–412

    CAS  Google Scholar 

  • Lieberman JR, Friedlaender GE (2005) Bone regeneration and repair. In: Lieberman JR, Friedlander GE (eds) Biology of bone graft. Springer, New York

    Google Scholar 

  • Ludwig KA, Uram JD, Yang J, Martin DC, Kipke DR (2006) Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly (3, 4-ethylenedioxythiophene)(PEDOT) film. J Neural Eng 3(1):59

    PubMed  Google Scholar 

  • Luo S-C, Mohamed Ali E, Tansil NC, Yu H-H, Gao S, Kantchev EAB, Ying JY (2008) Poly(3,4-ethylenedioxythiophene) (PEDOT) nanobiointerfaces: thin, ultrasmooth, and functionalized PEDOT films with in vitro and in vivo biocompatibility. Langmuir 24(15):8071–8077

    CAS  PubMed  Google Scholar 

  • Mansur AAP, Mansur HS (2010) Preparation, characterization, and cytocompatibility of bioactive coatings on porous calcium-silicate-hydrate scaffolds. Mater Sci Eng C 30(2):288–294

    CAS  Google Scholar 

  • Martínez O, Bravo AG, Pinto NJ (2009) Fabrication of poly(vinylidene fluoride−trifluoroethylene)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate composite nanofibers via electrospinning. Macromolecules 42(20):7924–7929

    Google Scholar 

  • Martins A, Reis R, Neves N (2008) Electrospinning: processing technique for tissue engineering scaffolding. Int Mater Rev 53(5):257–274

    CAS  Google Scholar 

  • Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF (2007) Impaired wound healing. Clin Dermatol 25(1):19–25

    PubMed  Google Scholar 

  • Metcalfe AD, Ferguson MW (2007) Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells, and regeneration. J R Soc Interface 4(14):413–437

    CAS  PubMed  Google Scholar 

  • Murugan R, Liao S, Ramakrishna S, Molnar P, Huang Z, Kotaki M, Rao KP, Hickman JJ (2010) Skeletal regenerative nanobiomaterials. Mater Sci Found (Monogr Ser) 62:1–34

    CAS  Google Scholar 

  • Muschler GF, Nakamoto C, Griffith LG (2004) Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg 86(7):1541–1558

    PubMed  Google Scholar 

  • Ouyang J, Chu CW, Chen FC, Xu Q, Yang Y (2005) High-conductivity poly(3, 4-ethylenedioxythiophene): poly(styrene sulfonate) film and its application in polymer optoelectronic devices. Adv Func Mater 15(2):203–208

    CAS  Google Scholar 

  • Owens RM, Malliaras GG (2010) Organic electronics at the interface with biology. MRS Bull 35(06):449–456

    CAS  Google Scholar 

  • Panapoy M, Saengsil M, Ksapabutr B (2008) Electrical conductivity of poly(3, 4-ethylenedioxythiophene)-poly (styrenesulfonate) coatings on polyacrylonitrile nanofibers for sensor applications. Adv Mater Res 55:257–260

    Google Scholar 

  • Powell HM, Supp DM, Boyce ST (2008) Influence of electrospun collagen on wound contraction of engineered skin substitutes. Biomaterials 29(7):834–843

    CAS  PubMed  Google Scholar 

  • Pukstad BS, Ryan L, Flo TH, Stenvik J, Moseley R, Harding K, Thomas DW, Espevik T (2010) Non-healing is associated with persistent stimulation of the innate immune response in chronic venous leg ulcers. J Dermatol Sci 59(2):115–122

    CAS  PubMed  Google Scholar 

  • Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2010) Applications of conducting polymers and their issues in biomedical engineering. J R Soc Interface 7:559–579

    Google Scholar 

  • Reddy KR, Jeong HM, Lee Y, Raghu AV (2010) Synthesis of MWCNTs-core/thiophene polymer-sheath composite nano cables by a cationic surfactant-assisted chemical oxidative polymerization and their structural properties. J Polym Sci, Part A: Polym Chem 48(7):1477–1484

    CAS  Google Scholar 

  • Reichert JC, Hutmacher DW (2011) Bone tissue engineering. In: Pallua N, Suschek CV (eds) Tissue engineering. Springer, New York, pp 431–456

    Google Scholar 

  • Rosso F, Marino G, Giordano A, Barbarisi M, Parmeggiani D, Barbarisi A (2005) Smart materials as scaffolds for tissue engineering. J Cell Physiol 203(3):465–470

    CAS  PubMed  Google Scholar 

  • Schumacher M, Uhl F, Detsch R, Deisinger U, Ziegler G (2010) Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique. J Mater Sci 21(11):3039–3048

    CAS  Google Scholar 

  • Schweizer TM (2005) Electrical characterization and investigation of the piezoresistive effect of PEDOT: PSS thin films, Georgia Institute of Technology.

  • Shahini A, Yazdimamaghani M, Walker KJ, Eastman MA, Hatami-Marbini H, Smith BJ, Ricci JL, Madihally SV, Vashaee D, Tayebi L (2014) 3D conductive nanocomposite scaffold for bone tissue engineering. Int J Nanomed 9:167–181

    Google Scholar 

  • Sharma B, Elisseeff JH (2004) Engineering structurally organized cartilage and bone tissues. Ann Biomed Eng 32(1):148–159

    PubMed  Google Scholar 

  • Shevchenko RV, James SL, James SE (2010) A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 7(43):229–258

    CAS  PubMed  Google Scholar 

  • Song W, Fan X, Xu BG, Yan F, Cui HQ, Wei Q, Peng RX, Hong L, Huang JM, Ge ZY (2018) All solution-processed metal oxide-free flexible organic solar cells with over 10% efficiency. Adv Mater 30:1800075

    Google Scholar 

  • Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11(5):18–25

    CAS  Google Scholar 

  • Sun K, Zhang S, Li P, Xia Y, Zhang X, Du D, Isikgor FH, Ouyang J (2015) Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. J Mater Sci 26:1–25

    Google Scholar 

  • Vasita R, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomed 1(1):15

    CAS  Google Scholar 

  • Vats A, Tolley N, Polak J, Gough J (2003) Scaffolds and biomaterials for tissue engineering: a review of clinical applications. Clin Otolaryngol Allied Sci 28(3):165–172

    CAS  PubMed  Google Scholar 

  • Yang J, Zhu R, Hong Z, He Y, Kumar A, Li Y, Yang Y (2011) A robust interconnecting layer for achieving high performance tandem polymer solar cells. Adv Mater 23:3465–3470

    CAS  PubMed  Google Scholar 

  • Yin H-E, Wu C-H, Kuo K-S, Chiu W-Y, Tai H-J (2012) Innovative elastic and flexible conductive PEDOT: PSS composite films prepared by introducing soft latexes. J Mater Chem 22(9):3800–3810

    CAS  Google Scholar 

  • Yue G, Wu J, Xiao Y, Lin J, Huang M, Lan Z, Fan L (2013) Functionalized graphene/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate as counter electrode catalyst for dye-sensitized solar cells. Energy 54:315–321

    CAS  Google Scholar 

  • Zhang F, Johansson M, Andersson MR, Hummelen JC, Inganäs O (2002) Polymer photovoltaic cells with conducting polymer anodes. Adv Mater 14(9):662–665

    Google Scholar 

  • Zhou D, Cui XT, Hines A, Greenberg R (2010) Conducting Polymers in neural stimulation applications. In: Zhou D, Greenbaum E (eds) Implantable neural prostheses 2. Springer, New York, pp 217–252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naznin Sultana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of human and animal rights

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultana, N., Chang, H., Jefferson, S. et al. Application of conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymers in potential biomedical engineering. J. Pharm. Investig. 50, 437–444 (2020). https://doi.org/10.1007/s40005-020-00485-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-020-00485-w

Keywords

Navigation