Skip to main content
Log in

Bio-inspired gold nanoparticles synthesis and their anti-biofilm efficacy

  • Original Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Gold nanoparticles (AuNPs) are ‘smart nanomaterials’ with a variety of applications in the different fields. The conventional methods used for AuNPs have some drawbacks and therefore, search of an alternative ‘green method’ is of high importance. In this study, Acinetobacter baumannii AB01 isolated from an infected apple sample was used as a green route for AuNPs synthesis. Effect of various physicochemical parameters such as pH, temperature, cell density and gold chloride salt concentrations on AuNPs synthesis was studied. These AuNPs were further characterized by UV–Vis spectrophotometer, transmission electron microscopy (TEM), energy dispersive spectroscopy, X-ray diffraction and dynamic light scattering. TEM images study showed presence of an extracellular polymeric substance around cells of A. baumannii AB01. The synthesized biogenic AuNPs were tested for their antibacterial activity by well diffusion method. Anti-biofilm efficacy of AuNPs was tested on the glass slide surfaces against the biofilms of Pseudomonas aeruginosa, Vibrio cholera and Brevibacterium linens and visualised by using a fluorescence microscopy. Biofilm formation was reduced about 60–80 % when compared with control biofilm (without AuNPs). Effect of different AuNPs concentrations on biofilm formation in microtiter plates was studied by 96-well plate assay. The bacterial biofilm inhibition (%) was increased with increasing concentrations of AuNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bankar A, Joshi B, Kumar A, Zinjarde S (2010) Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf B: Biointerf 80:45–50

    Article  CAS  Google Scholar 

  • Berlau J, Aucken M, Houang E, Pitt L (1999) Isolation of Acinetobacter spp. including A. baumannii from vegetables: implications for hospital-acquired infections. J Hosp Infect 42:201–204

    Article  CAS  PubMed  Google Scholar 

  • Beveridge J, Koval F (1981) Binding of metals to cell envelopes of Escherichia coli K.-12. Appl Environ Microbiol 14:325–335

    Google Scholar 

  • Brayner R, Barberousse H, Hernadi M, Djedjat C, Yéprémian C, Coradin T, Livage J, Fiévet F, Couté A (2007) Cyanobacteria as Bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7:2696–2708

    Article  CAS  PubMed  Google Scholar 

  • Chaw C, Manimaran M, Tay FEH (2005) Role of silver ions in destabilization of intermolecular adhesion forces measured by atomic force microscopy in Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 49:4853–4859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davenport EK, Call DR, Beyenal H (2014) Differential protection from tobramycin by extracellular polymeric substances from Acinetobacter baumannii and Staphylococcus aureus biofilms. Antimicrob Agents Chemother 58(8):4755–4761

    Article  PubMed  PubMed Central  Google Scholar 

  • Dehnad A, Hamedi J, Khadivi FD, Abuşov R (2015) Green synthesis of gold nanoparticles by a metal resistant Arthrobacter nitroguajacolicus isolated from gold mine. IEEE Transact Nanobiosci 14(4):393–396

    Article  Google Scholar 

  • Deshpande L, Kapadnis BP, Chopade B (1993) Metal resistance in Acinetobacter and its relation to β- lactamase production. Biometals 6:55–59

    Article  CAS  PubMed  Google Scholar 

  • Dhakephalkar PK, Chopade BA (1994) Plasmid mediated silver resistance in Acinetobacter baumannii. Biometals 7(1):67–74

    Article  CAS  PubMed  Google Scholar 

  • Dibrov P, Dzioba J, Gosink KK, Hase CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholera. Antimicrob Agents Chemother 46:2668–2670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dusane DH, Rajput JK, Kumar AR, Nancharaiah YV, Venugopalan VP, Zinjarde SS (2008) Disruption of fungal and bacterial biofilms by lauroyl glucose. Lett App Microbiol 47:374–379

    Article  CAS  Google Scholar 

  • Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnol 18:604–611

    Google Scholar 

  • Han G, Ghosh P, Rotello VM (2007) Functionalized gold nanoparticles for drug delivery. Nanomedicine 2:113–123

    Article  CAS  PubMed  Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Letters 61(18):3984–3987

    Article  CAS  Google Scholar 

  • Huang H, Yang X (2004) Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr Res 339:2627–2631

    Article  CAS  PubMed  Google Scholar 

  • Kawakami Y, Hayashi N, Ema M, Nakayama M (2007) Effects of divalent cations on Halobacterium salinarum cell aggregation. J Biosci Bioengineer 104:42–46

    Article  CAS  Google Scholar 

  • Kemp MM, Kumar A, Mousa S, Park TJ, Ajayan P, Kubotera N, Mousa S, Linhardt RJ (2009) Synthesis of gold and silver nanoparticles stabilized with glycosaminoglycans having distinctive biological activities. Biomacromol 10:589–595

    Article  CAS  Google Scholar 

  • Misra R, Acharya S, Sahoo SK (2010) Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discovery Today 15:842–850

    Article  CAS  PubMed  Google Scholar 

  • Mu H, Tang J, Liu Q, Sun C, Wang T, Duan J (2016) Potent antibacterial nanoparticles against biofilm and intracellular bacteria. Scient Rep 6:18877

    Article  CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298

    Article  CAS  Google Scholar 

  • Nithya B, Jayachitra A (2016) Imrpoved antibacterial and antobiofilm activity of plant mediated gold nanoparticles using Garcinia cambogia. Int J Pure App Biosci 4(2):201–210

    Article  Google Scholar 

  • Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. Nanobiotechnol 5:69–78

    Article  CAS  Google Scholar 

  • Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK (2009) Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B Biointerfaces 74:309–316

    Article  CAS  PubMed  Google Scholar 

  • Poli A, Donato PD, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea. doi:10.1155/2011/693253

    PubMed  PubMed Central  Google Scholar 

  • Ramasamy M, Lee MJ, Lee JJ (2016) Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold-silver nanoparticles against pathogenic bacteria and their physiochemical characterizations. J Biomater Appl. doi:10.1177/0885328216646910

    PubMed  Google Scholar 

  • Reddy AS, Chen C, Chen C, Wang J (2010) Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J Nanosci Nanotechnol 10(10):6567–6574

    Article  CAS  PubMed  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Sathiyanarayanan G, Vignesh V, Saibaba G, Vinothkanna A, Dineshkumar K, Viswanathan MB, Selvin J (2014) Synthesis of carbohydrate polymer encrusted gold nanoparticles using bacterial exopolysaccharide: a novel and greener approach. RSC Adv 4:22817–22827

    Article  CAS  Google Scholar 

  • Sau TK, Pal A, Jana NR, Wang ZL, Pal TJ (2001) Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. Nanopart Res 3:257–261

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2005) Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem Mater 17:566–572

    Article  CAS  Google Scholar 

  • Shrivastava S, Tanmay BE, Roy A, Singh G, Rao PR, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnol 18:1–9

    Article  Google Scholar 

  • Singh PK, Kundu S (2014) Biosynthesis of gold nanoparticles using bacteria. Proc National Acad Sci 84(2):331–336

    CAS  Google Scholar 

  • Singh R, Wagh P, Wadhwani S, Gaidhani S, Kumbhar A, Bellare J, Chopade BA (2013) Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int J Nanomed 8:4277–4290

    Google Scholar 

  • Sweeney SF, Woehrle GH, Hutchison JE (2006) Rapid purification and size separation of gold nanoparticles via diafiltration. J Am Chem Soc 128:3190–3197

    Article  CAS  PubMed  Google Scholar 

  • Vignesh V, Anbarasi KF, Karthikeyeni S, Sathiyanarayanan G, Subramanian P, Thirumurugan R (2013) A superficial phyto-assisted synthesis of silver nanoparticles and their assessment on hematological and biochemical parameters in Labeo rohita (Hamilton, 1822). Colloids Surf A 439:184–192

    Article  CAS  Google Scholar 

  • Visaria RK, Griffin RJ, Williams BW, Ebbini ES, Paciotti GF, Song CW, Bischof JC (2006) Enhancement of tumor thermal therapy using gold nanoparticle–assisted tumor necrosis factor-α delivery. Mol Cancer Ther 5:1014–1020

    Article  CAS  PubMed  Google Scholar 

  • Wadhwani SA, Shedbalkar UU, Singh R, Karve MS, Chopade BA (2014) Novel polyhedral gold nanoparticles: green synthesis, optimization and characterization by environmental isolate of Acinetobacter sp. SW30. World J Microbiol Biotechnol 30:2723–2731

    Article  CAS  PubMed  Google Scholar 

  • Wadhwani SA, Shedbalkar UU, Singh R, Vashisth P, Pruthi V, Choapde BA (2016) Kinetics of synthesis of gold nanoparticles by Acinetobacter sp. SW30 isolated from environment. Ind J Microbiol. doi:10.1007/s12088-016-0598-0

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to BCUD, Savitribai Phule Pune University, Pune, Maharashtra, India for providing financial assistance to the Department of Microbiology, Waghire College, Saswad, Pune, India. All authors declared that they have no conflict of interest and there is no use of animal and human subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Bankar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, N., Bankar, A. Bio-inspired gold nanoparticles synthesis and their anti-biofilm efficacy. Journal of Pharmaceutical Investigation 47, 521–530 (2017). https://doi.org/10.1007/s40005-016-0280-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-016-0280-x

Keywords

Navigation