Skip to main content

Advertisement

Log in

Mitigation of Abiotic Stress in Legume-Nodulating Rhizobia for Sustainable Crop Production

  • Review
  • Published:
Agricultural Research Aims and scope Submit manuscript

Abstract

Rhizobia form nitrogen-fixing nodules on leguminous plants and convert atmospheric nitrogen to plant-utilizable ammonia resulting into increased plant growth and crop yield. The growth of crops and rhizobia is adversely affected by various abiotic stresses including high temperature, soil salinity and drought. Under saprophytic phase in the soil, free-living rhizobial population usually declines due to abiotic stresses resulting to less nodulation in different legumes. Therefore, repeated inoculation is required every year for enhancing legume productivity. For effective nodulation, establishment and persistence of rhizobia in stressed environment is prerequisite, which depends mainly on their ability to tolerate, proliferate and survive under adverse environmental conditions. The major problem of abiotic stresses is faced in rainfed agro-ecosystems, which makes the survival of bio-inoculants a problematic issue. Moreover, a remarkable difference was observed in effectiveness of rhizobial bio-inoculants from laboratory to field conditions due to various abiotic stresses faced under field conditions. The survival of rhizobial inoculants and its limitations to enhance crop growth under field conditions may be overcome by screening the rhizobial isolates, which are tolerant to different types of stressed conditions. Stress-tolerant rhizobia could provide more beneficial effects under pot house and field trials leading to increased legume crop productivity in sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Courtesy: Dr. Anju Sehrawat)

Similar content being viewed by others

References

  1. Abdel-Salam MS, Ibrahim SA, Abdel-Halim MM, Badawy FM, Abo-Aba SEM (2011) Phenotypic characterization of indigenous Egyptian rhizobial strains for abiotic stresses performance. J Am Sci 7(1):168–174

    Google Scholar 

  2. Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85(1):1–12

    CAS  PubMed  Google Scholar 

  3. Alexandre A, Oliveira S (2013) Response to temperature stress in rhizobia. Crit Rev Microbiol 39:219–228

    CAS  PubMed  Google Scholar 

  4. Ali SF, Rawat LS, Meghvansi MK, Mahna SK (2009) Selection of stress-tolerant rhizobial isolates of wild legumes growing in dry regions of Rajasthan, India. ARPN J Agric Biol Sci 4(1):13–18

    Google Scholar 

  5. An J, Cheng C, Hu Z, Chen H, Cai W, Yu B (2018) The Panax ginseng PgTIP1 gene confers enhanced salt and drought tolerance to transgenic soybean plants by maintaining homeostasis of water, salt ions and ROS. Environ Exp Bot 155:45–55

    CAS  Google Scholar 

  6. Anonymous (2011) FAO statistical database. http://faostat.fao.org

  7. Arrese-Igor C, Gonzalez EM, Marino D, Ladrera R, Larrainzar E, Gil-Quintana E (2011) Physiological response of legumes nodules to drought. Plant Stress 5:24–31

    Google Scholar 

  8. Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620

    Google Scholar 

  9. Azeem F, Bilal A, Rana MA, Muhammad AA, Habibullah N, Sabir H, Sumaira R, Hamid M, Usama A, Muhammad A (2019) Drought affects aquaporins gene expression in important pulse legume chickpea (Cicer arietinum L.). Pak J Bot 51:81–88

    CAS  Google Scholar 

  10. Baloda A, Madanpotra S, Aiwal PK (2017) Transformation of mungbean plants for salt and drought tolerance by introducing a gene for an osmoprotectant glycine betaine. J Plant Stress Physiol 3:5–11

    Google Scholar 

  11. Bais HP, Park S-W, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9(1):26–32

    CAS  PubMed  Google Scholar 

  12. Bano A, Fatima M (2009) Salt tolerance in Zea mays L. following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45(4):405–413

    Google Scholar 

  13. Barrera-Figueroa BE, Peña-Castro JM, Acosta-Gallegos JA, Ruiz-Medrano R, Beatriz XC (2007) Isolation of dehydration-responsive genes in a drought tolerant common bean cultivar and expression of a group 3 late embryogenesis abundant mRNA in tolerant and susceptible bean cultivars. Funct Plant Biol 34:368–381

    CAS  PubMed  Google Scholar 

  14. Barrios S, Ouattara B, Strobl E (2008) The impact of climatic change on agricultural production: is it different for Africa? Food Policy 33(4):287–298

    Google Scholar 

  15. Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    CAS  PubMed  Google Scholar 

  16. Berrada H, Nouioui I, Houssaini MI, Gtari M, Benbrahim KF (2012) Phenotypic and genotypic characterizations of rhizobia isolated from root nodules of multiple legume species native of Morocco. Afr J Microbiol Res 6:5314–5324

    CAS  Google Scholar 

  17. Bhargava Y, Murthy JSR, Kumar TVR, Rao MN (2016) Phenotypic, stress tolerance and plant growth promoting characteristics of rhizobial isolates from selected wild legumes of semiarid region, Tirupati, India. Adv Microbiol 6:1–12

    CAS  Google Scholar 

  18. Biswas S, Das RH, Sharma GL (2008) Isolation and characterization of a novel cross-infective rhizobia from Sesbania aculeata (Dhaincha). Curr Microbiol 56:48–54

    CAS  PubMed  Google Scholar 

  19. Bohlool BB, Ladha JK, Garrity DP, George T (1992) Biological nitrogen fixation for sustainable agriculture: a perspective. Plant Soil 141:1–11

    CAS  Google Scholar 

  20. Bouhmouch I, Souad-Mouhsine B, Brhada F, Aurag J (2005) Influence of host cultivars and Rhizobium species on the growth and symbiotic performance of Phaseolus vulgaris under salt stress. J Plant Physiol 162:1103–1113

    CAS  PubMed  Google Scholar 

  21. Brockwell J, Bottomley PJ (1995) Recent advances in inoculant technology and prospects for the future. Soil Biol Biochem 27:683–697

    CAS  Google Scholar 

  22. Cabello JV, Giacomelli JI, Gomez MC, Chan RL (2017) The sunflower transcription factor HaHB11 confers tolerance to water deficit and salinity to transgenic Arabidopsis and alfalfa plants. J Biotechnol 257:35–46

    CAS  PubMed  Google Scholar 

  23. Cao D, Hou W, Liu W, Yao W, Wu C, Liu X, Han T (2011) Overexpression of TaNHX2 enhances salt tolerance of “composite” and whole transgenic soybean plants. Plant Cell Tissue Organ Cult 107:541–552

    CAS  Google Scholar 

  24. Carvalhais LC, Dennis PG, Fan B, Fedoseyenko D, Kierul K, Becker A, von Wiren N, Borriss R (2013) Linking plant nutritional status to plant-microbe interactions. PLoS ONE 8(7):e68555. https://doi.org/10.1371/journal.pone.0068555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chaparro JM, Sheflin AM, Mentor DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499

    Google Scholar 

  26. Choudhary AK, Sultana R, Isabel VM, Saxena KB, Kumar RR, Ratnakumar P (2018) Integrated physiological and molecular approaches to improvement of abiotic stress tolerance in two pulse crops of the semi-arid tropics. Crop J 6:99–114

    Google Scholar 

  27. Clair SB, Lynch JP (2010) The opening of Pandora’s Box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 335(1–2):101–115

    Google Scholar 

  28. Cocking EC, Webster G, Batchelor CA, Davey MR (1994) Nodulation of non-legume crops: a new look. Agro-Industry Hi-Tech, Milan, pp 21–24

    Google Scholar 

  29. Cortes AJ, This D, Carolina C, Madrinan S, Blair MW (2012) Nucleotide diversity patterns at the drought-related DREB2 encoding genes in wild and cultivated common bean (Phaseolus vulgaris L.). Theor Appl Genet 125:1069–1085

    CAS  PubMed  Google Scholar 

  30. Cui XH, Hao FS, Chen H, Chen J, Wang XC (2008) Expression of the Vicia faba VfPIP1 gene in Arabidopsis thaliana plants improves their drought resistance. J Plant Res 121:207–214

    CAS  PubMed  Google Scholar 

  31. Dadarwal KR, Yadav KS, Sindhu SS (1997) Biofertilizer production technology: prospects. In: Dadarwal KR (ed) Biotechnological approaches in soil microorganisms for sustainable crop production. Scientific Publishers, Jodhpur, pp 323–337

    Google Scholar 

  32. Dahmardeh M, Ghanbari A, Syasar B, Ramrodi M (2009) Effect of intercropping maize with cowpea on green forage yield and quality evaluation. Asian J Plant Sci 8:235–239

    Google Scholar 

  33. Dahmardeh M, Ghanbari A, Syasar B, Ramrodi M (2010) The role of intercropping maize (Zea mays L.) and cowpea (Vigna unguiculata L.) on yield and soil chemical properties. Afr J Agric Res 5:631–636

    Google Scholar 

  34. Damodara CK, Reddy SR, Triveni S, Trimurtulu N, Durga RV, Sreedhar M (2018) Screening and characterization of stress tolerant rhizobia from different soils of Telangana. Int J Microbiol Res 10(3):1038–1042

    CAS  Google Scholar 

  35. Davies WJ, Zhang J, Yang J, Dodd IC (2010) Novel crop science to improve yield and resource use efficiency in water-limited agriculture. J Agric Sci. https://doi.org/10.1017/S0021859610001115

    Article  Google Scholar 

  36. Del Pilar Cordovilla M, Berrido SI, Ligero F, Lluch C (1999) Rhizobium strain effects on the growth and nitrogen assimilation in Pisum sativum and Vicia faba plant growth under salt stress. J Plant Physiol 154(1):127–131

    Google Scholar 

  37. Demissie N, Degefu T, Ergena A, Ojiewo C (2018) Phenotypic characteristics of rhizobial and nonrhizobial isolates recovered from root nodules of chickpea (Cicer arietinum L.) grown in Ethiopia. Afr J Microbiol Res 12(4):73–85

    CAS  Google Scholar 

  38. Dhull S, Gera R (2017) Assessing stress tolerant rhizobial isolates of clusterbean (Cymopsis tetragonoloba (L.) Taub.) retrieved from semi-arid regions of Haryana, India. Int J Curr Microbiol Appl Sci 6(4):744–753

    CAS  Google Scholar 

  39. Duan Z, Zhang D, Zhang J, Di H, Wu F, Hu X, Meng X, Luo K, Zhang J, Wang Y (2015) Co-transforming bar and CsALDH genes enhanced resistance to herbicide and drought and salt stress in transgenic alfalfa (Medicago sativa L.). Front Plant Sci 6:1–9

    CAS  Google Scholar 

  40. Dudeja S, Khurana A (1989) Persistence of Bradyrhizobium sp. (Cajanus) in a sandy loam soil. Soil Biol Biochem 21:709–713

    Google Scholar 

  41. Elkan GH (1992) Taxonomy of the rhizobia. Can J Microbiol 38(6):446–450

    Google Scholar 

  42. Enebe MC, Babalola MO (2018) The influence of plant growth promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-018-9214-z

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fenta BA, Beebe SE, Kunert KJ, Burridge JD, Barlow KM, Lynch PJ (2014) Field phenotyping of soybean roots for drought stress tolerance. Agronomy 4:418–435

    Google Scholar 

  44. Figueiredo MV, Burity HA, Martínez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Google Scholar 

  45. Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Google Scholar 

  46. Fox AR, Soto G, Valverde C, Russo D, Lagares A Jr, Zorreguieta Á, Alleva K, Pascuan C, Frare R, Mercado-Blanco J, Dixon R (2016) Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium Pseudomonas protegens Pf-5 X940. Environ Microbiol 10:3522–3534

    Google Scholar 

  47. Franco JA, Banon S, Vicente MJ, Miralles J, Martínez-Sanchez JJ (2011) Root development in horticultural plants grown under abiotic stress conditions - a review. J Hortic Sci Biotechnol 86:543–556

    Google Scholar 

  48. Frechilla S, Gonzalez EM, Royuela M, Minchin FR, Aparicio-Tejo PM, Arrese-Igor C (2000) Source of nitrogen nutrition (nitrogen fixation or nitrate assimilation) is a major factor involved in pea response to moderate water stress. J Plant Physiol 157(6):609–617

    CAS  Google Scholar 

  49. Gal SW, Choi YJ (2003) Isolation and characterization of salt tolerance rhizobia from Acacia root nodules. Agric Chem Biotechnol 46:58–62

    CAS  Google Scholar 

  50. Garg A, Sharma M (2013) Study of stress tolerant forms of rhizobia isolated from Triogenella foenum-graceum in semi-arid region of Rajasthan. Int J Sci Res 2:336–339

    Google Scholar 

  51. Garg BK, Burman U, Kathju S (2004) The influence of phosphorus nutrition on the physiological response of moth bean genotypes to drought. J Plant Nutr Soil Sci 167:503–508

    CAS  Google Scholar 

  52. Garg N, Singla R (2009) Variability in the response of chickpea cultivars to short-term salinity in terms of water retention capacity, membrane permeability and osmo-protection. Turk J Agric 33:57–63

    CAS  Google Scholar 

  53. Gebremedhin W, Assefa F, Thuita M, Masso C (2018) Nutritionally versatile, abiotic stress resistant and symbiotically effective chickpea (Cicer arietinum L.) root nodulating rhizobial isolates from eastern, southeastern and southern ethiopia. eJBio 14(2):87–99

    Google Scholar 

  54. Goel AK, Sindhu SS, Dadarwal KR (2002) Stimulation of nodulation and plant growth of chickpea (Cicer arietinum) by Pseudomonas spp. antagonistic to fungal pathogens. Biol Fertil Soils 36:391–396

    CAS  Google Scholar 

  55. Gopal M, Gupta A (2016) Microbiome selection could spur next generation breeding strategies. Front Microbiol 7:1971

    PubMed  PubMed Central  Google Scholar 

  56. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5(4):355–377

    PubMed  Google Scholar 

  57. Graham PH (1992) Stress tolerance in Rhizobium and Bradyrhizobium and nodulation under adverse soil conditions. Can J Microbiol 38:475–484

    CAS  Google Scholar 

  58. Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27(5):1231–1240

    Google Scholar 

  60. Gunes A, Cicek NC, Inal A, Alpaslan M, Eraslan F, Guneri E, Guzelordu T (2006) Genotypic response of chickpea (Cicer arietinum L.) cultivars to drought stress implemented at pre and post-anthesis stages and its relations with nutrient uptake and efficiency. Plant Soil Environ 52:368–376

    CAS  Google Scholar 

  61. Gunes A, Inal A, Adak MS, Bagci EG, Cicek N, Eraslan F (2008) Effect of drought stress implemented at pre- or post- anthesis stage some physiological as screening criteria in chickpea cultivars. Russ J Plant Physiol 55:59–67

    CAS  Google Scholar 

  62. Haicher FZ, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80

    Google Scholar 

  63. Hanafy MS, El-Banna A, Schumacher HM, Jacobsen HJ, Hassan FS (2013) Enhanced tolerance to drought and salt stresses in transgenic faba bean (Vicia faba L.) plants by heterologous expression of the PR10a gene from potato. Plant Cell Rep 32:663–674

    CAS  PubMed  Google Scholar 

  64. Hashem FM, Swelim DM, Kuykendall LD, Mohamed AI, Abdel-Wahab SM, Hegazi NI (1998) Identification and characterization of salt and thermo-tolerant Leucaena-nodulating Rhizobium strains. Biol Fertil Soils 27:335–341

    CAS  Google Scholar 

  65. Islam MZ, Sattar MA, Ashrafuzzaman M, Berahim Z, Shamsuddoha ATM (2013) Evaluating some salinity tolerant rhizobacterial strains to lentil production under salinity stress. Int J Agric Biol 15:499–504

    Google Scholar 

  66. Jin T, Chang Q, Li W (2010) Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Tissue Organ Cult 100:219–227

    CAS  Google Scholar 

  67. Kalra N, Suneja P, Mendiratta N, Gupta N (2013) Simulating the impact of climate change and its variability on growth and yield of crops. Climate Change Environ Sustain 1(1):11–19

    Google Scholar 

  68. Kanouni L, Larous L, Mezaache-Aichour S (2018) Inhibitory effect of rhizobia isolated from several leguminous against phytopathogenic fungi. Annu Res Rev Biol 22(6):1–16

    Google Scholar 

  69. Kaushal M, Wani SP (2015) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66(1):35–42

    Google Scholar 

  70. Khaitov B, Kurbonov A, Abdiev A, Adilov M (2016) Effect of chickpea in association with Rhizobium to crop productivity and soil fertility. Eurasian J Soil Sci 2:105–112

    Google Scholar 

  71. Khokhar SN, Khan MA, Chaudhari MF (2001) Some characters of chickpea nodulating rhizobia native to Thal soil. Pak J Biol Sci 4(8):1016–1019

    Google Scholar 

  72. King CA, Purcell LC (2006) Genotypic variation for shoot N concentration and response to water deficits in soybean. Crop Sci 46:2396–2402

    CAS  Google Scholar 

  73. Kishor PBK, Hong Z, Miao CH, Hu CAA, Verma DPS (1995) Overexpression of A1-Pyrroline-5-Carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    CAS  PubMed  Google Scholar 

  75. Kuldeep GR, Padder SA (2016) Evaluation of rhizobial strains for abiotic stress tolerance in pigeon pea from arid and semi-arid zones of Haryana, India. Ecoscan 9:401–407

    CAS  Google Scholar 

  76. Kulkarni S, Surange S, Nautiyal SC (2000) Crossing the limits of Rhizobium existence in extreme conditions. Curr Microbiol 41(6):402–409

    CAS  PubMed  Google Scholar 

  77. Kumar A, Verma JP (2018) Does plant-microbe interaction confer stress tolerance to plants: a review. Microbiol Res 207:41–52

    CAS  PubMed  Google Scholar 

  78. Kumar K, Ghanti S, Sujata KG, Vijay Kumar BM, Nataraja Karba N, Reddy JK, Rao SM, Kishor KPB (2011) Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield. Biol Plant 55:634–640

    Google Scholar 

  79. Li DH, Li W, Li HY, Guo JJ, Chen FJ (2018) The soybean GmRACK1 gene plays a role in drought tolerance at vegetative stages. Russ J Plant Physiol 65:541–552

    CAS  Google Scholar 

  80. Lodeiro A, Gonzalez P, Hernandez Balague L, Favelukes G (2000) Comparison of drought tolerance in nitrogen-fixing and inorganic nitrogen-grown common beans. Plant Sci 154:31–41

    CAS  PubMed  Google Scholar 

  81. Maatallah J, Berraho E, Sanjuan J, Lluch C (2002) Phenotypic characterization of rhizobia isolated from chickpea (Cicer arietinum) growing in Moroccoan soils. Agronomie 22:321–329

    Google Scholar 

  82. Mangla (2013) Isolation, characterization and symbiotic performance of abiotic stress tolerant mungbean (Vigna radiata) rhizobia. Ph.D. Thesis, CCS Haryana Agricultural University, Hisar

  83. Mangla B, Kukreja K, Suneja S, Dudeja SS (2014) Symbiotic effectivity of high temperature tolerant mungbean (Vigna radiata) rhizobia under different temperature conditions. Int J Curr Microbiol Appl Sci 3:807–821

    Google Scholar 

  84. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    CAS  Google Scholar 

  85. Meena KK, Sorty AM, Bitla UM, Chaudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB, Krishanani KK, Minhas PS (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the comic strategies. Front Plant Sci 8:172

    PubMed  PubMed Central  Google Scholar 

  86. Mendoza A, Valderrama B, Leija A, Mora J (1998) NifA-dependent expression of glutamate dehydrogenase in Rhizobium etli modifies nitrogen partitioning during symbiosis. Mol Plant Microbe Interact 11:83–90

    CAS  PubMed  Google Scholar 

  87. Mhadhbi H, Jebara M, Limam F, Aouani ME (2004) Rhizobial strain involvement in plant growth, nodule protein composition and antioxidant enzyme activities of chickpea–rhizobia symbioses: modulation by salt stress. Plant Physiol Biochem 42:717–722

    CAS  PubMed  Google Scholar 

  88. Mohanram S, Kumar P (2019) Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions. Ann Microbiol 69:307–320

    Google Scholar 

  89. Molla AH, Shamsuddin ZH, Halimi MS, Morziah M, Puteh AB (2001) Potential for enhancement of root growth and nodulation of soybean co-inoculated with Azospirillum and Bradyrhizobium in laboratory systems. Soil Biol Biochem 33:457–463

    CAS  Google Scholar 

  90. Muchero W, Je V, Roberts PA (2010) Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea [Vigna unguiculata (L.) Walp.]. Theor Appl Genet 120:509–518

    CAS  PubMed  Google Scholar 

  91. Olenrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:197–211

    Google Scholar 

  92. Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34(4):737–752

    Google Scholar 

  93. Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soils 51(4):403–415

    CAS  Google Scholar 

  94. Plá CL, Cobos-Porra L (2015) Salinity: physiological impacts on legume nitrogen fixation. In: Sulieman SL, Tran SP (eds) Legume nitrogen fixation in a changing environment. Springer International Publishing, AG Switzerland, pp 35–65. https://doi.org/10.1007/978-3-319-06212-93

  95. Praba ML, Cairns JE, Babu RC, Lafitte HR (2009) Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J Agron Crop Sci 195:30–46

    Google Scholar 

  96. Prasuna ML (2014) Biological studies on the effect of agrochemicals on nodulation of some cultivated legumes. J Ind Pollut Control 30(2):317–319

    Google Scholar 

  97. Qureshi MI, Muneer S, Bashir H, Ahmad J, Iqbal M (2010) Nodule physiology and proteomics of stressed legumes. Adv Bot Res 56:1–48

    CAS  Google Scholar 

  98. Rai R, Dash PK, Gaikwad K, Jain PK (2013) Phenotypic and molecular profiling of indigenous chickpea rhizobia in India. CIB Tech J Microbiol 2:33–38

    CAS  Google Scholar 

  99. Rao DLN, Giller KE, Yeo AR, Flowers TJ (2002) The effects of salinity and sodicity upon nodulation and nitrogen fixation in chickpea. Ann Bot 89:563–570

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Rathore MS, Shekhawat NS, Gehlot HS (2009) Need of assessing rhizobia for their plant growth promoting activity associated with native wild legume inhabiting Aravalli ranges of Rajasthan, India. Bot Res Int 2:115–122

    Google Scholar 

  101. Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    CAS  Google Scholar 

  102. Remans R, Ramaekers L, Shelkens S, Hernandez G, Garcia A, Reyes GL, Mendez N, Toscano V, Mullin M, Galvez L, Vanderleyden J (2008) Effect of RhizobiumAzospirillum co-inoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312:25–37

    CAS  Google Scholar 

  103. Rodrigues C, Laranjo M, Oliveira S (2006) Effect of heat and pH stress in the growth of chickpea mesorhizobia. Curr Microbiol 53:1–7

    CAS  PubMed  Google Scholar 

  104. Romdhane SB, Trabelsi M, Aouani ME, de Lajudie P, Mhamdi R (2009) The diversity of rhizobia nodulating chickpea (Cicer arietinum) under water deficiency as a source of more efficient inoculants. Soil Biol Biochem 41:2568–2572

    Google Scholar 

  105. Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321(1–2):363–383

    CAS  Google Scholar 

  106. Samarah N, Mullen R, Cianzio S (2004) Size distribution and mineral nutrients of soybean seeds in response to drought stress. J Plant Nutr 27:815–835

    CAS  Google Scholar 

  107. Samineni KHM, Siddique PM, Gaur TD, Colmer LS (2011) Salt sensitivity of the vegetative and reproductive stages in chickpea podding is a particular sensitive stage. Environ Exp Bot 71:260–268

    CAS  Google Scholar 

  108. Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genom 12(1):30

    CAS  Google Scholar 

  109. Sardesai N, Babu CR (2001) Cold stress induced high molecular weight membrane polypeptides are responsible for cold tolerance in Rhizobium DDSS69. Microbiol Res 156:279–284

    CAS  PubMed  Google Scholar 

  110. Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome. Trends Plant Sci 23:25–41

    CAS  PubMed  Google Scholar 

  111. Savitri ES, Fauziah SM (2018) Characterization of drought tolerance of GmDREB2 soybean mutants (Glycine max L.) by ethyl methane sulfonate induction. In: AIP conference proceedings 2019

  112. Saxena KB, Singh G, Gupta HS, Mahajan V, Kumar RV, Singh B, Vales MI (2011) Enhancing the livelihoods of Uttarakhand farmers by introducing pigeonpea cultivation in hilly areas. J Food Legume 24:128–153

    Google Scholar 

  113. Sehrawat A, Khandelwal A, Sindhu SS (2020) Characterization of Mesorhizobium strains for salt tolerance and wilt control: their potential for plant growth promotion of chickpea (Cicer arietinum L.). Legume Res 43(1):146–150. https://doi.org/10.18805/LR-3973

    Article  Google Scholar 

  114. Sehrawat N, Bhat KV, Kaga A, Tomooka N, Yadav M, Jaiwal PK (2014) Development of new gene-specific markers associated with salt tolerance for mungbean (Vigna radiata L. Wilczek). Span J Agric Res 12:732–741

    Google Scholar 

  115. Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, pp 205–224

    Google Scholar 

  116. Serraj R, Krishnamurthy KL, Ashiwagi J, Kumar J, Chandra S, Crouch JH (2004) Variation in root traits of chickpea (Cicer arietinum L.) grown under terminal drought. Field Crops Res 88:115–127

    Google Scholar 

  117. Shamseldin A, Werner D (2005) High salt and high pH tolerance of new isolated Rhizobium etli strains from Egyptian soils. Curr Microbiol 50:11–16

    CAS  PubMed  Google Scholar 

  118. Sindhu SS, Dadarwal KR (1985) Protoplast formation and regeneration in Rhizobium and Azospirillum. Curr Sci 54:344–346

    Google Scholar 

  119. Sindhu SS, Dadarwal KR (1993) Broadening of host range infectivity in cowpea miscellany Rhizobium by protoplast fusion. Indian J Exp Biol 31:521–528

    Google Scholar 

  120. Sindhu SS, Dadarwal KR (1988) Effect of temperature on nitrogenase and hydrogenase activity in cowpea miscellany hosts. Indian J Microbiol 27:16–21

    Google Scholar 

  121. Sindhu SS, Dadarwal KR (1989) Anaerobic respiration by cowpea miscellany rhizobia using oxidized nitrogen and sulphur compounds. Indian J Microbiol 28:178–183

    Google Scholar 

  122. Sindhu SS, Dadarwal KR (1992) Rhizobium strain and host plant cultivar interaction affecting relative efficiency and effectivity in chickpea (Cicer arietinum L.). In: Bisen PS (ed) Frontier in microbial technology. CBS Publishers, New Delhi, pp 105–109

    Google Scholar 

  123. Sindhu SS, Dadarwal KR (1995) Molecular biology of nodule development and nitrogen fixation in Rhizobium-legume symbiosis. In: Srivastava HS, Singh RP (eds) Nitrogen nutrition in higher plants. Associated Publishing Company, New Delhi, pp 57–129

    Google Scholar 

  124. Sindhu SS, Dadarwal KR (1997) Molecular aspects of host specificity in Rhizobium-legume symbiosis and possibilities of inducing nodule in non-legume crops. In: Dadarwal KR (ed) Biotechnological approaches in soil microorganisms for sustainable crop production. Scientific Publishers, Jodhpur, pp 39–69

    Google Scholar 

  125. Sindhu SS, Dadarwal KR (2000) Competition for nodulation among rhizobia in legume-Rhizobium symbiosis. Indian J Microbiol 40:211–246

    Google Scholar 

  126. Sindhu SS, Brewin NJ, Kannenberg EL (1990) Immunochemical analysis of lipopolysaccharides from free-living and endosymbiotic forms of Rhizobium leguminosarum. J Bacteriol 172:1804–1813

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Sindhu SS, Dadarwal KR, Davis TM (1992) Non-nodulating chickpea breeding line for the study of symbiotic nitrogen fixation potential. Indian J Microbiol 32(2):175–180

    Google Scholar 

  128. Sindhu SS, Kannenberg EL, Brewin JJ (1988) Lipopolysaccharide maturation in pea and bean bacteroides. In: Bothe H, De Bruijn FJ, Newton WE (eds) Nitrogen fixation: hunderd years after. Gustav Fischer, Stuttgart, p 480

    Google Scholar 

  129. Sindhu SS, Malik DK, Dadarwal KR (2003) Enhancing the potential of biological nitrogen fixation by genetic manipulations of diazotrophic bacteria for sustainable agriculture. In: Singh RP, Jaiwal PK (eds) Plant genetic engineering. Volume 1, applications and limitations. Sci Tech Publ LCC, Houston, pp 199–228

    Google Scholar 

  130. Sindhu SS, Parmar P, Phour M, Kumari K (2014) Rhizosphere microorganisms for improvement in soil fertility and plant growth. In: Nagpal R, Kumar A, Singh R (eds) Microbes in the service of mankind: tiny bugs with huge impact. JBC Press, New Delhi, pp 32–94

    Google Scholar 

  131. Sindhu SS, Rakshiya YS, Sahu G (2009) Biological control of soil borne plant pathogens with rhizosphere bacteria. Pest Technol 3(1):10–21

    Google Scholar 

  132. Sindhu SS, Sehrawat A, Sharma R, Dahiya A (2016) Biopesticides: use of rhizosphere bacteria for biological control of plant pathogens. Def Life Sci J 1:135–148

    Google Scholar 

  133. Sindhu SS, Sehrawat A, Sharma R, Dahiya A, Khandelwal A (2018) Belowground microbial cross-talk and rhizosphere biology. In: Singh DP (ed) Plant-microbe interactions in agro-ecological perspectives. Vol. 1: fundamental mechanisms, methods and functions. Springer, Singapore, pp 695–752

    Google Scholar 

  134. Sindhu SS, Sharma R, Sindhu S, Sehrawat A (2019) Soil fertility improvement by symbiotic rhizobia for sustainable agriculture. In: Jhala YK, Panpatte DG (eds) Soil fertility management for sustainable development. Springer, Singapore, pp 101–166

    Google Scholar 

  135. Sindhu SS, Suneja S, Goel AK, Parmar N, Dadarwal KR (2002) Plant growth promoting effects of Pseudomonas sp. on coinoculation with Mesorhizobium sp. Cicer strain under sterile and wilt sick soil conditions. Appl Soil Ecol 19:57–64

    Google Scholar 

  136. Singh RP, Manchanda G, Singh RN, Srivastava AK, Dubey RC (2016) Selection of alkalotolerant and symbiotically efficient chickpea nodulating rhizobia from North-West Indo Gangetic plains. J Basic Microbiol 56:14–25. https://doi.org/10.1002/jobm.201500267

    Article  CAS  PubMed  Google Scholar 

  137. Soussi M, Santamaria M, Ocana A, Lluch C (2001) Effects of salinity on protein and lipopolysaccharide pattern in a salt-tolerant strain of Mesorhizobium ciceri. J Appl Microbiol 90:476–481

    CAS  PubMed  Google Scholar 

  138. Sridhar KR, Arun AB, Narula N, Deubel A, Merbech W (2005) Patterns of sole-carbon-utilization by fast growing coastal sand dune rhizobia of the Southwest coast of India. Eng Life Sci 5:425–430

    CAS  Google Scholar 

  139. Srivastava R, Kumar S, Kobayashi Y, Kusunoki K, Tripathi P, Kobayashi Y, Koyama H, Sahoo L (2018) Comparative genome-wide analysis of WRKY transcription factors in two Asian legume crops: adzuki bean and mung bean. Sci Rep 8:169–171

    Google Scholar 

  140. Suarez R, Wong A, Ramırez M, Barraza A, Orozco MC, Cevallos MA, Lara M, Hernandez G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant Microbe Interact 21:958–966

    CAS  PubMed  Google Scholar 

  141. Sulieman S, Tran LSP (2013) Asparagine: an amide of particular distinction in the regulation of symbiotic nitrogen fixation of legumes. Crit Rev Biotechnol 33:309–327

    CAS  PubMed  Google Scholar 

  142. Stagnari F, Maggio A, Galieni A, Pisante M (2017) Multiple benefits of legumes for agriculture sustainability. Chem Biol Technol Agric 4(2):1–13

    Google Scholar 

  143. Sultana R, Choudhary AK, Pal KB, Saxena BD, Prasad R, Singh G (2014) Abiotic stresses in major pulses: current status and strategies. In: Sharma P, Gaur RK (eds) Approaches to plant stress and their management. Springer, New Delhi, pp 173–190

    Google Scholar 

  144. Suzuki N, Rizhsky L, Liang H, Shuman J, Shulaev V, Mittler R (2005) Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional co-activator Multiprotein Bridging Factor 1c. Plant Physiol 139:1313–1322

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Swarnalakshmi K, Yadav V, Kumar MS, Dhar DW (2016) Biofertilizers for higher pulse production in India: scope, accessibility and challenges. Indian J Agron 61:173–181

    Google Scholar 

  146. Talebi R, Ensafi MH, Baghebani N, Karami E, Mohammadi K (2013) Physiological responses of chickpea (Cicer arietinum) genotypes to drought stress. Environ Exp Biol 11:9–15

    Google Scholar 

  147. Tang L, Cai H, Ji W, Luo X, Wang Z, Wu J, Wang X, Cui L, Wang Y, Zhu Y (2013) Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiol Biochem 71:22–30

    CAS  PubMed  Google Scholar 

  148. Tejera NA, Soussi M, Lluch C (2006) Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Environ Exp Bot 58:17–24

    CAS  Google Scholar 

  149. Tena W, Meskel EW, Walley F (2016) Symbiotic efficiency of native and exotic Rhizobium strains nodulating Lentil (Lens culinaris Medik.) in soils of Southern Ethiopia. Agronomy 6:242–250

    Google Scholar 

  150. Thies JE, Woomer PL, Singleton PW (1995) Enrichment of Bradyrhizobium spp. population in soil due to copping of the homologous host legume. Soil Biol Biochem 27:633–636

    CAS  Google Scholar 

  151. Uma C, Sivagurunathan P, Sangeetha D (2013) Performance of bradyrhizobial isolates under drought conditions. Int J Curr Microbiol Appl Sci 2:228–232

    Google Scholar 

  152. Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97(21):11632–11637. https://doi.org/10.1073/pnas.190309197

    Article  CAS  PubMed  Google Scholar 

  153. Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2004) SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:17306–17311

    CAS  PubMed  Google Scholar 

  154. Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206(4):1196–1206

    PubMed  Google Scholar 

  155. Verma J, Yadav J, Tiwari KN (2010) Impact of plant growth promoting rhizobacteria on crop production. Int J Agric Res 11:954–983

    Google Scholar 

  156. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    CAS  Google Scholar 

  157. Vriezen JA, de Brujin FJ, Nusslein K (2006) Desiccation responses and survival of Sinorhizobium meliloti USDA 1021 in relation to growth phase, temperature, chloride and sulfate availability. Lett Appl Microbiol 42(2):172–178

    CAS  PubMed  Google Scholar 

  158. Wadhwa Z, Srivastava V, Rani R, Tanvi Makkar K, Jangra S (2017) Isolation and characterization of Rhizobium from Chickpea (Cicer arietinum). Int J Curr Microbiol Appl Sci 6(11):2880–2893

    Google Scholar 

  159. Wang L, Zhu J, Li X, Wang S, Wu J (2018) Salt and drought stress and ABA responses related to bZIP genes from V. radiata and V. angularis. Gene 651:152–160

    CAS  PubMed  Google Scholar 

  160. Wang LS, Chen QS, Xin DW, Qi ZM, Zhang C, Li SN, Jin Y, Li M, Mei HY, Su AY (2018) Overexpression of GmBIN2, a soybean glycogen synthase kinase 3 gene, enhances tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots. J Integr Agric 17:1959–1971

    CAS  Google Scholar 

  161. Wang Y, Jiang L, Chen J, Tao L, An Y, Cai H, Guo C (2018) Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean. PLoS ONE 13:1–16

    Google Scholar 

  162. Wang Z, Ke Q, Kim MD, Kim SH, Ji CY (2015) Transgenic alfalfa plants expressing the sweet potato orange gene exhibit enhanced abiotic stress tolerance. PLoS ONE 10:1–17

    Google Scholar 

  163. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    CAS  PubMed  Google Scholar 

  164. Yoo JH, Park CY, Cheol J, Do Heo W, Cheong MS, Park HC, Kim MC, Moon BC, Choi MS, Kang YH (2005) Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem 280:3697–3706

    CAS  PubMed  Google Scholar 

  165. Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Zahran HH, Abdel FM, Yasser MM, Mahmoud AM, Bedmar EJ (2012) Diversity and environmental stress responses of rhizobial bacteria from Egyptian grain legumes. Aust J Basic Appl Sci 6(10):571–583

    CAS  Google Scholar 

  167. Zhang J, Duan Z, Zhang D, Zhang J, Di H, Wu F, Wang Y (2016) Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.). Biochem Biophys Res Commun 472:75–82

    CAS  PubMed  Google Scholar 

  168. Zhang LX, Li SX, Zhang H, Liang ZS (2007) Nitrogen rates and water stress effects on production, lipid peroxidation and antioxidative enzyme activities in two maize (Zea mays L.) genotypes. J Agron Crop Sci 11:387–397

    Google Scholar 

  169. Zhang X, Ervin EH (2008) Impact of seaweed extract-based cytokinins and zeatin riboside on creeping bentgrass heat tolerance. Crop Sci 48(1):364–370

    Google Scholar 

  170. Zheng G, Fan C, Di S, Wang X, Xiang C, Pang Y (2017) Over-expression of Arabidopsis EDT1 gene confers drought tolerance in alfalfa (Medicago sativa L.). Front Plant Sci 8:1–14

    Google Scholar 

  171. Zorner P, Farmer S, Alibek K (2018) Quantifying crop rhizosphere microbiome ecology: the next frontier in enhancing the commercial utility of agricultural microbes. Ind Biotechnol (New Rochelle NY) 14(3):116–119

    Google Scholar 

  172. Zurayk R (1998) Interactive effects of salinity and biological nitrogen fixation on chickpea (Cicer arietnum L.) growth. J Agron Crop Sci 180:249–258

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally in preparation of the manuscript. Dr. SS and Dr. AD compiled all the related information available about abiotic stress-tolerant rhizobia. Dr. RG and Dr. SSS critically reviewed and analysed the available literature for final preparation of the manuscript. This work was carried out in collaboration among all the authors. All authors have read the submitted manuscript and have approved the final draft.

Corresponding author

Correspondence to Satyavir Singh Sindhu.

Ethics declarations

Conflict of interest

The authors declare no existence of any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sindhu, S., Dahiya, A., Gera, R. et al. Mitigation of Abiotic Stress in Legume-Nodulating Rhizobia for Sustainable Crop Production. Agric Res 9, 444–459 (2020). https://doi.org/10.1007/s40003-020-00474-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40003-020-00474-3

Keywords

Navigation