Skip to main content
Log in

Jute Leaf Physicochemical cue-mediated Behavioral Responses of Diacrisia casignetum Kollar

  • Full-Length Research Article
  • Published:
Agricultural Research Aims and scope Submit manuscript

Abstract

The role of jute, Chorchorus capsularis (cv. Sonali; JRC-321), leaf physicochemical cues in the form of cuticular surface ultrastructures and wax chemicals mainly n-alkanes and free fatty acids (FFAs) on attraction and oviposition preference of Diacrisia casignetum Kollar (Lepidoptera: Arctiidae) was studied under laboratory conditions. The GC–MS and GC-FID analyses of mature jute leaf surface wax indicated the presence of 257.04 and 171.36 µg/leaf n-alkanes and FFAs, respectively. Eighteen n-alkanes from n-C16 to n-C36 and 13 FFAs from C12:0 to C20:0 were detected in the leaf surface wax. The cuticular surface ultrastructures and its chemicals have been demonstrated in this work to serve as cues for eliciting attraction and oviposition responses of the adults to mature jute leaves. The synthetic combination mixture mimicking the natural surface wax components of 4 n-alkanes (n-C17, n-C18, n-C27, n-C29) and 5 FFAs (C16:0, C16:1, C18:1, C18:2, C18:3) was most attractive to D. casignetum adults, whereas same mixtures excluding 2 n-alkanes (n-C27, n-C29) indicated significantly optimum oviposition preference at leaf equivalent (µg/leaf) concentrations that may be used for this pest management program as baited trap. The present study will also ensure sustainability of success in integrated pest management (IPM) in the form of green pest management (GPM) in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adati T, Matsuda K (2000) The effect of leaf surface wax on feeding of the strawberry leaf beetle, Galerucella vittaticollis, with reference to host plant preference. Tohoku J Agric Res 50:57–61

    Google Scholar 

  2. Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12. https://doi.org/10.2478/v10102-009-0001-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bernays EA (2001) Neural limitations in phytophagous insects: implications for diet breadth and evolution of host affiliation. Ann Rev Entomol 46:703–727

    Article  CAS  Google Scholar 

  4. Chapman RF (2003) Contact chemoreception in feeding by phytophagous insects. Ann Rev Entomol 48:455–484

    Article  CAS  Google Scholar 

  5. Chapman RF, Bernays EA (1989) Insect behavior at the leaf surface and learning as aspects of host plant selection. Cell Mol Life Sci 45:215–222

    Article  Google Scholar 

  6. Cunningham JP, Zalucki MP, West SA (1999) Learning in Helicoverpa armigera (Lepidoptera: Noctuidae): a new look at the behaviour and control of a polyphagous pest. Bull Entomol Res 89:201–207

    Article  Google Scholar 

  7. Desneux N, Decourtye A, Delpuech J-M (2007) The sublethal effects of pesticides on beneficial arthropods. Ann Rev Entomol 52:81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440

    Article  CAS  Google Scholar 

  8. Egan JF, Bohnenblust E, Goslee S, Mortensen D, Tooker J (2014) Herbicide drift can affect plant and arthropod communities. Agric Ecosyst Environ 185:77–87. https://doi.org/10.1016/j.agee.2013.12.017

    Article  CAS  Google Scholar 

  9. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  10. Finch S, Collier RH (2000) Host-plant selection by insects—a theory based on ‘appropriate/inappropriate landings’ by pest insects of cruciferous plants. Entomol Exp Appl 96:91–102

    Article  Google Scholar 

  11. Foster SP, Howard AJ (1998) Influence of stimuli from Camellia japonica on ovipositional behavior of generalist herbivore Epiphyas postvittana. J Chem Ecol 24:1251–1275

    Article  CAS  Google Scholar 

  12. Heinz CA (2008) Host plant odor extracts with strong effects on oviposition behavior in Papilio polyxenes. Entomol Exp Appl 128:265–273

    Article  Google Scholar 

  13. Jetter R, Schaffer S, Riederer M (2000) Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: evidence from Prunus laurocerasus L. Plant Cell Environ 23:619–628

    Article  CAS  Google Scholar 

  14. Koschier EH, Kogel WJD, Visser JH (2000) Assessing the attractiveness of volatile plant compounds to western flower thrips Frankliniella occidentalis. J Chem Ecol 26:2643–2655

    Article  CAS  Google Scholar 

  15. Li G, Ishiwaka Y (2006) Leaf epicuticular wax chemicals of the Japanese knotweed Fallopia japonica as oviposition stimulant for Ostrinia latipennis. J Chem Ecol 32:595–604

    Article  CAS  PubMed  Google Scholar 

  16. Malik U, Barik A (2015) Free fatty acids from the weed, Polygonum orientale leaves for attraction of the potential biocontrol agent, Galerucella placida (Coleoptera: Chrysomelidae). Biocontrol Sci Technol 25:593–607

    Article  Google Scholar 

  17. McCallum EJ, Cunningham JP, Lücker J, Zalucki MP, De Voss JJ, Botella JR (2011) Increased plant volatile production affects oviposition, but not larval development, in the moth Helicoverpa armigera. J Exp Biol 214:3672–3677

    Article  CAS  PubMed  Google Scholar 

  18. Mukherjee A, Sarkar N, Barik A (2014) Long-chain free fatty acids from Momordica cochinchinensis leaves as attractants to its insect pest, Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae). J Asia-Pacific Entomol 17:229–234

    Article  CAS  Google Scholar 

  19. Parr MJ, Tran BMD, Simmonds MSJ, Kite GC, Credland PF (1998) Influence of some fatty acids on oviposition by the bruchid beetle, Callosobruchus maculatus. J Chem Ecol 24:1577–1593

    Article  CAS  Google Scholar 

  20. Renwick JAA, Chew FS (1994) Oviposition behavior in lepidoptera. Ann Rev Entomol 39:377–400

    Article  Google Scholar 

  21. Roy N (2014) Role of Chorchorus capsularis phytochemicals on the feeding dynamics of Diacrisia casignetum Kollar (Lepidoptera: Arctiidae). J Entomol Zool Stud 2:227–236

    Google Scholar 

  22. Roy N (2015) Life table and population parameters of Diacrisia casignetum Kollar (Lepidoptera: Arctiidae) on jute, Chorchorus capsularis (cv. Sonali; JRC-321), leaves. Int J Fauna Biol Stud 2:23–29

    Google Scholar 

  23. Roy N, Barik A (2010) The role of volatiles in tritrophic interactions. Environ Ecol 28:352–355

    Google Scholar 

  24. Roy N, Barik A (2012) Alkanes used for host recognition by the arctiid moth, Diacrisia casignetum Kollar. J Entomol Res 36:345–350

    CAS  Google Scholar 

  25. Roy N, Barik A (2012) The impact of variation in foliar constituents of sunflower on development and reproduction of Diacrisia casignetum Kollar (Lepidoptera: Arctiidae). Psyche. https://doi.org/10.1155/2012/812091

    Article  Google Scholar 

  26. Roy N, Barik A (2013) Influence of four host plants on feeding, growth and reproduction of Diacrisia casignetum (Lepidoptera: Arctiidae). Entomol Sci 16:112–118

    Article  Google Scholar 

  27. Roy N, Barik A (2014) Long-chain fatty acids: semiochemicals for host location by the insect pest, Diacrisia casignetum. J Kansas Entomol Soc 87:22–36

    Article  Google Scholar 

  28. Roy N, Chattopadhyay C, Barik A (2013) Assessing the attractiveness of odorous esterified fatty acids to arctiid moth, Diacrisia casignetum Kollar. Ecoscan 3:87–91

    Google Scholar 

  29. Roy N, Laskar S, Barik A (2012) Determination of n-alkane profile through developmental state of sunflower leaves. South Pacific J Nat Appl Sci 30:72–76

    Article  Google Scholar 

  30. Roy N, Laskar S, Barik A (2012) The attractiveness of odorous esterified fatty acids to the potential biocontrol agent, Altica cyanea. J Asia-Pacific Entomol 15:277–282

    Article  Google Scholar 

  31. Sarkar N, Mukherjee A, Barik A (2013) Long-chain alkanes: allelochemicals for host location by the insect pest, Epilachna dodecastigma (Coleoptera: Coccinellidae). Appl Entomol Zool 48:171–179

    Article  CAS  Google Scholar 

  32. Sarkar N, Mukherjee A, Barik A (2013) Olfactory responses of Epilachna dodecastigma (Coleoptera: Coccinellidae) to long-chain fatty acids from Momordica charantia leaves. Arth-Plant Int 7:339–348

    Article  Google Scholar 

  33. Schäpers A, Carlsson MA, Gamberale-Stille G, Janz N (2015) The role of olfactory cues for the search behavior of a specialist and generalist butterfly. J Insect Behav 28:77–87

    Article  Google Scholar 

  34. Schoonhoven LM, Van Loon JJA, Dicke M (2005) Insect-plant biology. Oxford University Press, Oxford

    Google Scholar 

  35. Singh R, Koul O, Rup PJ, Jindal J (2011) Oviposition and feeding behavior of the maize borer, Chilo partellus, in response to eight essential oil allelochemicals. Entomol Exp Appl 138:55–64

    Article  CAS  Google Scholar 

  36. Srinivasan R, Su FC, Huang SS (2013) Oviposition dynamics and larval development of Helicoverpa armigera on a highly preferred unsuitable host plant, Solanum viarum. Entomol Exp Appl 147:217–224

    Article  Google Scholar 

  37. Wadhera D, Capaldi-Phillips ED (2014) A review of visual cues associated with food on food acceptance and consumption. Eat Behav 15:132–143

    Article  PubMed  Google Scholar 

  38. Yang G, Zhang Y-N, Gurr GM, Vasseur L, You M-S (2016) Electroantenogram and behavioral responses of Cotesia plutellae to plant volatiles. Insect Sci 23:245–252

    Article  CAS  PubMed  Google Scholar 

  39. Yi X, Liu J, Wang P, Hu M, Zhong G (2014) Contacting is essential for oviposition deterrence of Rhodojaponin-III in Spodoptera litura. Arch Insect Biochem Physiol 86:122–136

    Article  CAS  PubMed  Google Scholar 

  40. Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

The work was funded by a minor research project provided by the University Grants Commission [F. No. PSW-025/13-14], New Delhi, Government of India. The author is highly grateful to the USIC department for SEM study, Chemical Ecology Laboratory for GC-FID and the Department of Chemistry for FT-IR, The University of Burdwan, West Bengal, India. He is also thankful to the IICB, Kolkata, West Bengal, India, for GC–MS analysis.

Author information

Authors and Affiliations

Authors

Contributions

NR designed the whole study including sample collection, chemical analysis and data analysis and prepared the manuscript.

Corresponding author

Correspondence to Nayan Roy.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 402 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, N. Jute Leaf Physicochemical cue-mediated Behavioral Responses of Diacrisia casignetum Kollar. Agric Res 8, 287–296 (2019). https://doi.org/10.1007/s40003-018-0362-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40003-018-0362-2

Keywords

Navigation