Skip to main content
Log in

Leaf Surface Wax Chemicals in Trichosanthes anguina (Cucurbitaceae) Cultivars Mediating Short-Range Attraction and Oviposition in Diaphania indica

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Larval Diaphania indica (Saunders) (Lepidoptera: Crambidae) cause complete defoliation of Trichosanthes anguina L. and reduce crop yield in India. Females lay eggs on the leaf surface, and therefore leaf surface waxes are potentially involved in host selection. Alkanes and free fatty acids are the major constituents of leaf surface waxes, so a study was conducted to determine whether these wax constituents from three T. anguina cultivars (MNSR-1, Baruipur Long, and Polo No.1) could act as short-range attractants and oviposition stimulants in D. indica females. Twenty n-alkanes from n-C14 to n-C36 and 13 free fatty acids from C12:0 to C21:0 were detected in the leaf surface waxes of these cultivars. Heptadecane and stearic acid were predominant among n-alkanes and free fatty acids, respectively, in these cultivars. Females showed attraction towards one leaf equivalent surface wax of each of these cultivars against solvent controls (petroleum ether) in Y-tube olfactometer bioassays. A synthetic blend of heptadecane, eicosane, hexacosane, and stearic acid, a synthetic blend of hexacosane and stearic acid, and a synthetic blend of pentadecane and stearic acid comparable to amounts present in one leaf equivalent surface wax of MNSR-1, Baruipur Long, and Polo No.1, respectively, were short-range attractants and oviposition stimulants in D. indica. Female egg laying responses were similar to each of these blends, providing information that could be used to developing baited traps in integrated pest management (IPM) programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary material.

Code Availability

Not applicable.

References

  • Ali MA, Sayeed MA, Islam MS, Yeasmin MS, Khan GRMAM, Muhamad II (2011) Physicochemical and antimicrobial properties of Trichosanthes anguina and Swietenia mahagoni seeds. Bull Chem Soc Ethiop 25:427–436

    Article  CAS  Google Scholar 

  • Arawwawala M, Thabrew I, Arambewela L (2009) Antidiabetic activity of Trichosanthes cucumerina in normal and streptozotocin–induced diabetic rats. Int J Biol Chem Sci 3:287–296

    Google Scholar 

  • Arawwawala LDAM, Thabrew MI, Arambewela LSR (2010a) Gastroprotective activity of Trichosanthes cucumerina in rats. J Ethnopharmacol 127:750–754

    Article  CAS  PubMed  Google Scholar 

  • Arawwawala M, Thabrew I, Arambewela L, Handunnetti S (2010b) Anti-inflammatory activity of Trichosanthes cucumerina Linn. in rats. J Ethnopharmacol 131:538–543

    Article  PubMed  Google Scholar 

  • Arawwawala LDAM, Thabrew MI, Arambewela LSR, Fernando N, Guruge LD (2011a) Antibacterial activity of Trichosanthes cucumerina Linn. extracts. Int J Pharm Biol Arch 2:808–812

    Google Scholar 

  • Arawwawala M, Thabrew I, Arambewela L (2011b) In vitro and in vivo evaluation of antioxidant activity of Trichosanthes cucumerina aerial parts. Acta Biol Hung 62:235–243

    Article  CAS  PubMed  Google Scholar 

  • Chachalis D, Reddy KN, Elmore CD, Steele ML (2001) Herbicide efficacy, leaf structure, and spray droplet contact angle among Ipomoea species and smallflower morningglory. Weed Sci 49:628–634

    Article  CAS  Google Scholar 

  • Clavijo AJ, Munroe E, Arias CQ (1995) The genus Diaphania Hübner (Lep.: Cramibidae); key to the economically important species. Agron Trop (Maracay) 45:347–358

    Google Scholar 

  • Das S, Koner A, Barik A (2019) A beetle biocontrol agent of rice-field weeds recognizes its host plants by surface wax long-chain alkanes and free fatty acids. Chemoecology 29:155–170

    Article  CAS  Google Scholar 

  • Debnath R, Mobarak SH, Mitra P, Barik A (2020) Comparative performance and digestive physiology of Diaphania indica (Lepidoptera: Crambidae) on Trichosanthes anguina (Cucurbitaceae) cultivars. Bull Entomol Res 110:756–766

    Article  CAS  PubMed  Google Scholar 

  • Dodoš T, Rajčević N, Tešević V, Matevski V, Janaćković P, Marin PD (2015) Composition of leaf n-alkanes in three Satureja montana L. subspecies from the Balkan peninsula: ecological and taxonomic aspects. Chem Biodivers 12:157–169

    Article  PubMed  CAS  Google Scholar 

  • Grant GG, Zhao B, Langevin D (2000) Oviposition response of spruce budworm (Lepidoptera: Tortricidae) to aliphatic carboxylic acids. Environ Entomol 29:164–170

    Article  CAS  Google Scholar 

  • Hibbard BE, Bernklau EJ, Bjostad LB (1994) Long-chain free fatty acids: semiochemicals for host location by western corn rootworm larvae. J Chem Ecol 20:3335–3344

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzade S, Izadi H, Namvar P, Samih MA (2014) Biology, temperature thresholds, and degree-day requirements for development of the cucumber moth, Diaphania indica, under laboratory conditions. J Insect Sci 14:61. https://doi.org/10.1093/jis/14.1.61

    Article  PubMed  PubMed Central  Google Scholar 

  • Jetter R, Schäffer S (2001) Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiol 126:1725–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X-C, Dong W-X, Chen B, Xiao C, Gui F-R, Yan N-S, Qian L, Li Z-Y (2015) Electrophysiological and oviposition responses of Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae), to compounds rinsed from the surfaces of sugarcane and maize leaves. Eur J Entomol 112:295–301

    Article  Google Scholar 

  • Kage DN, Malashetty VB, Seetharam YN, Suresh P, Patil SB (2009) Effect of ethanol extract of whole plant of Trichosanthes cucumerina var. cucumerina L. on gonadotropins, ovarian follicular kinetics and estrous cycle for screening of antifertility activity in albino rats. Int J Morphol 27:173–182

    Article  Google Scholar 

  • Karmakar A, Mitra S, Barik A (2018) Systemically released volatiles from Solena amplexicaulis plant leaves with color cues influencing attraction of a generalist insect herbivore. Int J Pest Manag 64:210–220

    Article  CAS  Google Scholar 

  • Kundu S, Sinhababu A (2013) Analysis of n-alkanes in the cuticular wax of leaves of Ficus glomerata Roxb. J Appl Nat Sci 5:226–229

    Article  CAS  Google Scholar 

  • Li G, Ishikawa Y (2006) Leaf epicuticular wax chemicals of the Japanese knotweed Fallopia japonica as oviposition stimulants for Ostrinia latipennis. J Chem Ecol 32:595–604

    Article  CAS  PubMed  Google Scholar 

  • Manosalva L, Pardo F, Perich F, Mutis A, Parra L, Ortega F, Isaacs R, Quiroz A (2011) Behavioral responses of clover root borer to long-chain fatty acids from young red clover (Trifolium pratense) roots. Environ Entomol 40:399–404

    Article  CAS  Google Scholar 

  • Mitra S, Sarkar N, Barik A (2017) Long-chain alkanes and fatty acids from Ludwigia octovalvis weed leaf surface waxes as short-range attractant and ovipositional stimulant to Altica cyanea (Weber) (Coleoptera: Chrysomelidae). Bull Entomol Res 107:391–400

    Article  CAS  PubMed  Google Scholar 

  • Mitra P, Das S, Barik A (2020a) Leaf waxes from Lathyrus sativus: short-range attractant and stimulant for nymph laying in a viviparous insect. Chemoecology 30:117–129

    Article  CAS  Google Scholar 

  • Mitra P, Mobarak SH, Debnath R, Barik A (2020b) The role of Lathyrus sativus flower surface wax in short-range attraction and stimulant for nymph laying by an adult viviparous aphid. Bull Entomol Res 110:231–241

    Article  CAS  PubMed  Google Scholar 

  • Mobarak SH, Koner A, Mitra S, Mitra P, Barik A (2020) The importance of leaf surface wax as short-range attractant and oviposition stimulant in a generalist Lepidoptera. J Appl Entomol 144:616–631

    Article  CAS  Google Scholar 

  • Mukherjee A, Sarkar N, Barik A (2014) Long-chain free fatty acids from Momordica cochinchinensis leaves as attractants to its insect pest, Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae). J Asia-Pac Entomol 17:229–234

    Article  CAS  Google Scholar 

  • Müller C (2006) Plant–insect interactions on cuticular surfaces. In: Riederer M, Müller C (eds) Biology of the plant cuticle. Blackwell Publishing, Oxford, pp 398–422

    Chapter  Google Scholar 

  • Müller C, Hilker M (2001) Host finding and oviposition behavior in a chrysomelid specialist–the importance of host plant surface waxes. J Chem Ecol 27:985–994

    Article  PubMed  Google Scholar 

  • Ojiako OA, Igwe CU (2008) The nutritive, anti-nutritive and hepatotoxic properties of Trichosanthes anguina (snake tomato) fruits from Nigeria. Pak J Nutr 7:85–89

    Article  CAS  Google Scholar 

  • Pandey PN (1977) Host preference and selection of Diaphania indica Saunders (Lep., Pyralidae). Dtsch Ent Z F 24:159–173

    Article  Google Scholar 

  • Parr MJ, Tran BMD, Simmonds MSJ, Kite GC, Credland PF (1998) Influence of some fatty acids on oviposition by the bruchid beetle, Callosobruchus maculatus. J Chem Ecol 24:1577–1593

    Article  CAS  Google Scholar 

  • Phelan PL, Roelofs CJ, Youngman RR, Baker TC (1991) Characterization of chemicals mediating ovipositional host-plant finding by Amyelois transitella females. J Chem Ecol 17:599–613

    Article  CAS  PubMed  Google Scholar 

  • Piasentier E, Bovolenta S, Malossini F (2000) The n-alkane concentrations in buds and leaves of browsed broadleaf trees. J Agric Sci 135:311–320

    Article  CAS  Google Scholar 

  • Post-Beittenmiller D (1996) Biochemistry and molecular biology of wax production in plants. Annu Rev Plant Physiol Plant Mol Biol 47:405–430

    Article  CAS  PubMed  Google Scholar 

  • Roopa HS, Rajashekara S, Ramakrishna S, Venkatesha MG (2014) Screening of bio-pesticides on Diaphania indica (Saunders) (Lepidoptera: Pyralidae), a pest of gherkins. Trends Life Sci 29:37–43

    Google Scholar 

  • Sambaraju KR, Donelson SL, Bozic J, Phillips TW (2016) Oviposition by female Plodia interpunctella (Lepidoptera: Pyralidae): description and time budget analysis of behaviors in laboratory studies. Insects 7:4. https://doi.org/10.3390/insects7010004

    Article  PubMed Central  Google Scholar 

  • Sarkar N, Barik A (2015) Free fatty acids from Momordica charantia L. flower surface waxes influencing attraction of Epilachna dodecastigma (Wied.) (Coleoptera: Coccinellidae). Int J Pest Manage 61:47–53

    Article  CAS  Google Scholar 

  • Sarkar N, Malik U, Barik A (2014) n–Alkanes in epicuticular waxes of Vigna unguiculata (L.) Walp. leaves. Acta Bot Gal 161:373–377

    Article  CAS  Google Scholar 

  • Schiestl FP, Ayasse M, Paulus HF, Lӧfstedt C, Hansson BS, Ibarra F, Francke W (1999) Orchid pollination by sexual swindle. Nature 399:421–422

    Article  CAS  Google Scholar 

  • Singh A, Singh R, Navneet (2017) Ethnomedicinal, pharmacological, antimicrobial potential and phytochemistry of Trichosanthes anguina Linn.- a review. Bull Pure Appl Sci 36b:82–90

    Article  Google Scholar 

  • Tomasi P, Dyer JM, Jenks MA, Abdel-Haleem H (2018) Characterization of leaf cuticular wax classes and constituents in a spring Camelina sativa diversity panel. Ind Crop Prod 112:247–251

    Article  CAS  Google Scholar 

  • Tripathi R, Pandy P (1973) A non cucurbitaceous food plant of Diaphania indica. J Sci Technol 11:80–86

    Google Scholar 

  • Udayagiri S, Mason CE (1997) Epicuticular wax chemicals in Zea mays influence oviposition in Ostrinia nubilalis. J Chem Ecol 23:1675–1687

    Article  CAS  Google Scholar 

  • Yusuf AA, Folarin OM, Bamiro FO (2007) Chemical composition and functional properties of snake gourd (Trichosanthes cucumerina) seed flour. Nig Food J 25:36–45

    CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, New Jersey, p 663

    Google Scholar 

Download references

Acknowledgements

We thank anonymous reviewers for many helpful suggestions of earlier versions of the manuscript. We thank Dr. M. Alma Solis, Research Entomologist, SEL, USDA, Smithsonian Institution, Washington for authenticating the insect. We also thank DST PURSE Phase-II for providing the necessary instrumental facilities.

Funding

The financial assistance from the UGC-JRF, New Delhi, Govt. of India to Rahul Debnath [F.No. 16-6(DEC. 2017)/2018(NET/CSIR)] is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

A.B. and R.D. designed experiments. R.D. and P.M. performed bioassays. R.D. and S.D. did chemical analyses. A.B. and R.D. analysed data. R.D. and P.M. made the Figs. A.B. wrote the manuscript. All authors edited the manuscript and approved the final version of the manuscript.

Corresponding author

Correspondence to Anandamay Barik.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors agreed to the submission of the final manuscript.

Conflict of Interest/Competing Interests

The authors declare that they have no conflict of interest/competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 621 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, R., Mitra, P., Das, S. et al. Leaf Surface Wax Chemicals in Trichosanthes anguina (Cucurbitaceae) Cultivars Mediating Short-Range Attraction and Oviposition in Diaphania indica. J Chem Ecol 47, 664–679 (2021). https://doi.org/10.1007/s10886-021-01291-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-021-01291-w

Keywords

Navigation