CardioVasc

, Volume 18, Issue 2, pp 47–51 | Cite as

Zielstruktur für neue Therapeutika

MikroRNA-92a-Hemmer für die Behandlung von Herz-Kreislauf-Erkrankungen

Fortbildung Schwerpunkt Kardiologie
  • 14 Downloads

MikroRNAs (miRNA) sind kurze, nicht kodierende RNAs, die die Regulation der Proteinsynthese auf mRNA-Ebene steuern. Die mikroRNA-92a (miR-92a) ist eine Ischämie-regulierte miRNA, deren Expression unter pathophysiologischen Bedingungen hochreguliert ist. Sie stellt eine interessante Zielstruktur für die Entwicklung von neuen Therapeutika zur Behandlung von Herzinfarkt- und Atherosklerosepatienten oder Wundheilungsstörungen dar.

Literatur

  1. 1.
    Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011;469(7330):336–42CrossRefGoogle Scholar
  2. 2.
    Bonauer A, Boon RA, Dimmeler S. Vascular microRNAs. Curr Drug Targets. 2010;11(8):943–9CrossRefGoogle Scholar
  3. 3.
    Bonauer A, Carmona G, Iwasaki M et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. 2009;324(5935):1710–3CrossRefGoogle Scholar
  4. 4.
    Loyer X, Potteaux S, Vion AC et al. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res. 2014;114(3):434–43CrossRefGoogle Scholar
  5. 5.
    Wu W, Xiao H, Laguna-Fernandez A et al. Flow-Dependent Regulation of Kruppel-Like Factor 2 Is Mediated by MicroRNA-92a. Circulation. 2011;124(5):633–41CrossRefGoogle Scholar
  6. 6.
    Fang Y, Davies PF. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol. 2012;32(4):979–87CrossRefGoogle Scholar
  7. 7.
    Zhang B, Zhou M, Li C et al. MicroRNA-92a inhibition attenuates hypoxia/reoxygenation-induced myocardiocyte apoptosis by targeting Smad7. PLoS One. 2014;9(6):e100298CrossRefGoogle Scholar
  8. 8.
    Lai L, Song Y, Liu Y et al. MicroRNA-92a negatively regulates Toll-like receptor (TLR)-triggered inflammatory response in macrophages by targeting MKK4 kinase. J Biol Chem. 2013;288(11):7956–67CrossRefGoogle Scholar
  9. 9.
    Taurino C, Miller WH, McBride MW et al. Gene expression profiling in whole blood of patients with coronary artery disease. Clin Sci (Lond). 2010;119(8):335–43CrossRefGoogle Scholar
  10. 10.
    Fichtlscherer S, De Rosa S, Fox H et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107(5):677–84CrossRefGoogle Scholar
  11. 11.
    Lucas T, Schäfer F, Müller P et al. Light-inducible antimiR-92a as a therapeutic strategy to promote skin repair in healing-impaired diabetic mice. Nat Commun. 2017;8:15162CrossRefGoogle Scholar
  12. 12.
    Krützfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with “antagomirs”. Nature. 2005;438(7068):685–9CrossRefGoogle Scholar
  13. 13.
    Lennox KA, Behlke MA. A direct comparison of anti-microRNA oligonucleotide potency. Pharm Res. 2010;27(9):1788–99CrossRefGoogle Scholar
  14. 14.
    Bellera N, Barba I, Rodriguez-Sinovas A et al. Single intracoronary injection of encapsulated antagomir-92a promotes angiogenesis and prevents adverse infarct remodeling. J Am Heart Assoc. 2014;3(5):e000946CrossRefGoogle Scholar
  15. 15.
    Hinkel R, Penzkofer D, Zühlke S et al. Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation. 2013;128(10):1066–75CrossRefGoogle Scholar
  16. 16.
    Iaconetti C, Polimeni A, Sorrentino S et al. Inhibition of miR-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury. Basic Res Cardiol. 2012;107(5):296CrossRefGoogle Scholar
  17. 17.
    Daniel JM, Penzkofer D, Teske R et al. Inhibition of miR-92a improves re-endothelialization and prevents neointima formation following vascular injury. Cardiovasc Res. 2014;103(4):564–72CrossRefGoogle Scholar
  18. 18.
    Shang F, Wang SC, Hsu CY et al. MicroRNA-92a Mediates Endothelial Dysfunction in CKD. J Am Soc Nephrol. 2017;28(11):3251–61CrossRefGoogle Scholar
  19. 19.
    Henique C, Bollée G, Loyer X et al. Genetic and pharmacological inhibition of microRNA-92a maintains podocyte cell cycle quiescence and limits crescentic glomerulonephritis. Nat Commun. 2017;8(1):1829CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für kardiovaskuläre Regeneration, Zentrum für Molekulare MedizinJ.W. Goethe Universität Frankfurt am MainFrankfurtDeutschland
  2. 2.Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK)BerlinDeutschland

Personalised recommendations