Skip to main content
Log in

Hemmung der Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9)

Therapie der Hypercholesterinämie

  • Schwerpunkt_Lipidologie
  • Published:
CardioVasc Aims and scope

Zusammenfassung

Die LDL-Cholesterin (LDL-C)-Senkung mit Statinen reduziert das Risiko für kardiovaskuläre Erkrankungen, jedoch erreichen nicht alle Patienten den angestrebten LDL-C-Zielwert und es verbleibt ein residuales Risiko. LDL-Partikel werden aus dem Plasma hauptsächlich durch LDL-Rezeptoren (LDL-R) in Hepatozyten aufgenommen. Die LDL-R werden zurück zur Plasmamembran transportiert und stehen erneut zur LDL-C-Bindung zur Verfügung. Dieses „Recycling“ der LDL-R wird durch die Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) reguliert. PCSK9 bindet an die LDL-R und führt zu deren Abbau. Eine Hemmung von PCSK9 resultiert in einer verstärkten Expression hepatischer LDL-R und führt zu einer Reduktion des LDL-C im Plasma. Daher stellt eine therapeutische Inhibition von PCSK9 (z.B. durch monoklonale Antikörper) eine potente Intervention für eine LDL-C-Senkung dar, deren klinische Bedeutung aktuell in großen klinischen Studienprogrammen geprüft wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Seidah NG, Benjannet S, Wickham L, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (narc-1): Liver regeneration and neuronal differentiation. Proc Natl Acad Sci U S A. 2003;100:928–33

    Article  PubMed  CAS  Google Scholar 

  2. Abifadel M, Varret M, Rabes JP, et al. Mutations in pcsk9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–6

    Article  PubMed  CAS  Google Scholar 

  3. Maxwell KN, Soccio RE, Duncan EM, et al. Novel putative srebp and lxr target genes identified by microarray analysis in liver of cholesterol-fed mice. J Lipid Res. 2003;44:2109–19

    Article  PubMed  CAS  Google Scholar 

  4. Benjannet S, Rhainds D, Essalmani R, et al. Narc-1/pcsk9 and its natural mutants: Zymogen cleavage and effects on the low density lipoprotein (ldl) receptor and ldl cholesterol. J Biol Chem. 2004;279:48865–48875

    Article  PubMed  CAS  Google Scholar 

  5. Park SW, Moon YA, Horton JD. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J Biol Chem. 2004;279:50630–8

    Article  PubMed  CAS  Google Scholar 

  6. Cohen J, Pertsemlidis A, Kotowski IK, et al. Low ldl cholesterol in individuals of african descent resulting from frequent nonsense mutations in pcsk9. Nat Genet. 2005;37:161–5

    Article  PubMed  CAS  Google Scholar 

  7. Cohen JC, Boerwinkle E, Mosley TH Jr., Hobbs HH. Sequence variations in pcsk9, low ldl, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72

    Article  PubMed  CAS  Google Scholar 

  8. Zhao Z, Tuakli-Wosornu Y, Lagace TA, et al. Molecular characterization of loss-of-function mutations in pcsk9 and identification of a compound heterozygote. Am J Hum Genet. 2006;79:514–23

    Article  PubMed  CAS  Google Scholar 

  9. Hooper AJ, Marais AD, Tanyanyiwa DM, Burnett JR. The c679x mutation in pcsk9 is present and lowers blood cholesterol in a southern african population. Atherosclerosis. 2007;193:445–8

    Article  PubMed  CAS  Google Scholar 

  10. Seidah NG, Mayer G, Zaid A, et al. The activation and physiological functions of the proprotein convertases. Int J Biochem Cell Biol. 2008;40:1111–25

    Article  PubMed  CAS  Google Scholar 

  11. Seidah NG, Prat A. The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov. 2012;11:367–83

    Article  PubMed  CAS  Google Scholar 

  12. Lambert G, Charlton F, Rye KA, Piper DE. Molecular basis of pcsk9 function. Atherosclerosis. 2009;203:1–7

    Article  PubMed  CAS  Google Scholar 

  13. Seidah NG, Prat A. The proprotein convertases are potential targets in the treatment of dyslipidemia. J Mol Med. 2007;85:685–96

    Article  PubMed  CAS  Google Scholar 

  14. Lagace TA, Curtis DE, Garuti R, et al. Secreted pcsk9 decreases the number of ldl receptors in hepatocytes and in livers of parabiotic mice. J Clin Invest. 2006;116:2995–3005

    Article  PubMed  CAS  Google Scholar 

  15. Qian YW, Schmidt RJ, Zhang Y, et al. Secreted pcsk9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J Lipid Res. 2007;48:1488–98

    Article  PubMed  CAS  Google Scholar 

  16. Dietschy JM, Turley SD, Spady DK. Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res. 1993;34:1637–59

    PubMed  CAS  Google Scholar 

  17. Goldstein JL, Brown MS, Anderson RG, et al. Receptor-mediated endocytosis: Concepts emerging from the ldl receptor system. Annu Rev Cell Biol. 1985;1:1–39

    Article  PubMed  CAS  Google Scholar 

  18. Horton JD, Shah NA, Warrington JA, et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct srebp target genes. Proc Natl Acad Sci U S A. 2003;100:12027–32

    Article  PubMed  CAS  Google Scholar 

  19. Le May C, Kourimate S, Langhi C, et al. Proprotein convertase subtilisin kexin type 9 null mice are protected from postprandial triglyceridemia. Arterioscler Thromb Vasc Biol. 2009;29:684–90

    Article  PubMed  Google Scholar 

  20. Urban D, Poss J, Bohm M, Laufs U. Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. J Am Coll Cardiol. 2013;62:1401–8

    Article  PubMed  CAS  Google Scholar 

  21. Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: Prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366:1267–78

    Article  PubMed  CAS  Google Scholar 

  22. Pearson TA, Laurora I, Chu H, Kafonek S. The lipid treatment assessment project (l-tap): A multicenter survey to evaluate the percentages of dyslipidemic patients receiving lipid-lowering therapy and achieving low-density lipoprotein cholesterol goals. Arch Intern Med. 2000;160:459–67

    Article  PubMed  CAS  Google Scholar 

  23. Sueta CA, Chowdhury M, Boccuzzi SJ, et al. Analysis of the degree of undertreatment of hyperlipidemia and congestive heart failure secondary to coronary artery disease. Am J Cardiol. 1999;83:1303–7

    Article  PubMed  CAS  Google Scholar 

  24. Gitt AK, Drexel H, Feely J, et al. Persistent lipid abnormalities in statin-treated patients and predictors of ldl-cholesterol goal achievement in clinical practice in europe and canada. Eur J Prev Cardiol. 2012;19:221–30

    Article  PubMed  Google Scholar 

  25. Laufs U, Weintraub WS, Packard CJ. Beyond statins: What to expect from add-on lipid regulating therapy? Eur Heart J. 2013;34:2660–5

    Article  PubMed  Google Scholar 

  26. Careskey HE, Davis RA, Alborn WE, et al. Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9. J Lipid Res. 2008;49:394–8

    Article  PubMed  CAS  Google Scholar 

  27. Welder G, Zineh I, Pacanowski MA, et al. High-dose atorvastatin causes a rapid sustained increase in human serum pcsk9 and disrupts its correlation with ldl cholesterol. J Lipid Res. 2010;51:2714–21

    Article  PubMed  CAS  Google Scholar 

  28. Awan Z, Seidah NG, MacFadyen JG, et al. Rosuvastatin, proprotein convertase subtilisin/kexin type 9 concentrations, and ldl cholesterol response: The jupiter trial. Clin Chem. 2012;58:183–9

    Article  PubMed  CAS  Google Scholar 

  29. Jeong HJ, Lee HS, Kim KS, et al. Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J Lipid Res. 2008;49:399–409

    Article  PubMed  CAS  Google Scholar 

  30. Berge KE, Ose L, Leren TP. Missense mutations in the pcsk9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler Thromb Vasc Biol. 2006;26:1094–100

    Article  PubMed  CAS  Google Scholar 

  31. Thompson JF, Hyde CL, Wood LS, et al. Comprehensive whole-genome and candidate gene analysis for response to statin therapy in the treating to new targets (tnt) cohort. Circ Cardiovasc Genet. 2009;2:173–81

    Article  PubMed  CAS  Google Scholar 

  32. Chan JC, Piper DE, Cao Q, et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci U S A. 2009;106:9820–5

    Article  PubMed  CAS  Google Scholar 

  33. Dias CS, Shaywitz AJ, Wasserman SM, et al. Effects of amg 145 on low-density lipoprotein cholesterol levels: Results from 2 randomized, double-blind, placebo-controlled, ascending-dose phase 1 studies in healthy volunteers and hypercholesterolemic subjects on statins. J Am Coll Cardiol. 2012;60:1888–98

    Article  PubMed  CAS  Google Scholar 

  34. Sullivan D, Olsson AG, Scott R, et al. Effect of a monoclonal antibody to pcsk9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: The gauss randomized trial. JAMA. 2012;308:2497–506

    Article  PubMed  CAS  Google Scholar 

  35. Giugliano RP, Desai NR, Kohli P, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (laplace-timi 57): A randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet. 2012;380:2007–17

    Article  PubMed  CAS  Google Scholar 

  36. Koren MJ, Scott R, Kim JB, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 as monotherapy in patients with hypercholesterolaemia (mendel): A randomised, double-blind, placebo-controlled, phase 2 study. Lancet. 2012;380:1995–2006

    Article  PubMed  CAS  Google Scholar 

  37. Stein EA, Swergold GD. Potential of proprotein convertase subtilisin/kexin type 9 based therapeutics. Curr Atheroscler Rep. 2013;15:310

    Article  PubMed  Google Scholar 

  38. Stein EA, Gipe D, Bergeron J, et al. Effect of a monoclonal antibody to pcsk9, regn727/sar236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: A phase 2 randomised controlled trial. Lancet. 2012;380:29–36

    Article  PubMed  CAS  Google Scholar 

  39. McKenney JM, Koren MJ, Kereiakes DJ, et al. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, sar236553/regn727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J Am Coll Cardiol. 2012;59:2344–53

    Article  PubMed  CAS  Google Scholar 

  40. Roth EM, McKenney JM, Hanotin C, et al. Atorvastatin with or without an antibody to pcsk9 in primary hypercholesterolemia. N Engl J Med. 2012;367:1891–900

    Article  PubMed  CAS  Google Scholar 

  41. Graham MJ, Lemonidis KM, Whipple CP, et al. Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum ldl in hyperlipidemic mice. J Lipid Res. 2007;48:763–7

    Article  PubMed  CAS  Google Scholar 

  42. Frank-Kamenetsky M, Grefhorst A, Anderson NN, et al. Therapeutic rnai targeting pcsk9 acutely lowers plasma cholesterol in rodents and ldl cholesterol in nonhuman primates. Proc Natl Acad Sci U S A. 2008;105:11915–20

    Article  PubMed  CAS  Google Scholar 

  43. Shan L, Pang L, Zhang R, et al. Pcsk9 binds to multiple receptors and can be functionally inhibited by an egf-a peptide. Biochem Biophys Res Commun. 2008;375:69–73

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Laufs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlicek, V., Urban, D. & Laufs, U. Hemmung der Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9). CV 13, 44–48 (2013). https://doi.org/10.1007/s15027-013-0271-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15027-013-0271-z

Schlüsselwörter

Navigation