WHO | Global tuberculosis report 2018 [Internet]. WHO. Available 2019 Aug 29, from http://www.who.int/tb/publications/global_report/en/. Accessed 29 Aug 2019
Afsar I, Gunes M, Er H, Sener AG. Comparison of culture, microscopic smear and molecular methods in diagnosis of tuberculosis. Rev Esp Quimioter. 2018;31:435–8.
CAS
PubMed
PubMed Central
Google Scholar
Perez-Velez CM, Marais BJ. Disease burden and recent epidemiologic shifts. Tuberculosis. 2012. https://doi.org/10.1056/NEJMra1008049.
Article
Google Scholar
Ngabonziza JCS, Ssengooba W, Mutua F, Torrea G, Dushime A, Gasana M, Andre E, Uwamungu S, Nyaruhirira AU, Mwaengo D, Muvunyi CM. Diagnostic performance of smear microscopy and incremental yield of Xpert in detection of pulmonary tuberculosis in Rwanda. BMC Infect Dis. 2016. https://doi.org/10.1186/s12879-016-2009-x.
Article
PubMed
PubMed Central
Google Scholar
Chegou NN, Essone PN, Loxton AG, Stanley K, Black GF, van der Spuy GD, van Helden PD, Franken KL, Parida SK, Klein MR, Kaufmann SHE, Ottenhoff THM, Walzl G. Potential of host markers produced by infection phase-dependent antigen-stimulated cells for the diagnosis of tuberculosis in a highly endemic area. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0038501.
Article
PubMed
PubMed Central
Google Scholar
Essone PN, Kalsdorf B, Chegou NN, Loxton AG, Kriel M, Preyer R, Ernst M, Walzl G, Lange C. Bifunctional T-cell-derived cytokines for the diagnosis of tuberculosis and treatment monitoring. Respiration. 2014;88:251–61. https://doi.org/10.1159/000365816.
CAS
Article
PubMed
Google Scholar
Penn-Nicholson A, Hraha T, Thompson EG, Sterling D, Mbandi SK, Wall KM, Fisher M, Suliman S, Shankar S, Hanekom WA, Janjic N, Hatherill M, Kaufmann SHE, et al. Discovery and validation of a prognostic proteomic signature for tuberculosis progression: a prospective cohort study. PLoS Med. 2019;16: e1002781. https://doi.org/10.1371/journal.pmed.1002781.
CAS
Article
PubMed
PubMed Central
Google Scholar
Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, Andrews NC. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 2005;1:191–200. https://doi.org/10.1016/j.cmet.2005.01.003.
CAS
Article
PubMed
Google Scholar
Tashiro K, Yamamoto M, Ushio R, Kobayashi N, Sato T, Kudo M, Kaneko T. Hepcidin exerts a negative immunological effect in pulmonary tuberculosis without HIV co-infection, prolonging the time to culture-negative. Int J Infect Dis. 2019;86:47–54. https://doi.org/10.1016/j.ijid.2019.06.023.
CAS
Article
PubMed
Google Scholar
Liang L, Liu H, Yue J, Liu L-R, Han M, Luo L-L, Zhao Y-L, Xiao H. Association of single-nucleotide polymorphism in the hepcidin promoter gene with susceptibility to extrapulmonary tuberculosis. Genet Test Mol Biomark. 2017;21:351–6. https://doi.org/10.1089/gtmb.2016.0300.
CAS
Article
Google Scholar
Hella J, Cercamondi CI, Mhimbira F, Sasamalo M, Stoffel N, Zwahlen M, Bodmer T, Gagneux S, Reither K, Zimmermann MB, Risch L, Fenner L. Anemia in tuberculosis cases and household controls from Tanzania: Contribution of disease, coinfections, and the role of hepcidin. PLoS ONE. 2018;13: e0195985. https://doi.org/10.1371/journal.pone.0195985.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kerkhoff AD, Meintjes G, Burton R, Vogt M, Wood R, Lawn SD. Relationship between blood concentrations of hepcidin and anemia severity, mycobacterial burden, and mortality among patients with hiv-associated tuberculosis. J Infect Dis. 2016;213:61–70. https://doi.org/10.1093/infdis/jiv364.
CAS
Article
PubMed
Google Scholar
Tsung SH. Several conditions causing elevation of serum CK-MB and CK-BB. Am J Clin Pathol. 1981;75:711–5. https://doi.org/10.1093/ajcp/75.5.711.
CAS
Article
PubMed
Google Scholar
Syed FF, Ntsekhe M, Gumedze F, Badri M, Mayosi BM. Myopericarditis in tuberculous pericardial effusion: prevalence, predictors and outcome. Heart Br Card Soc. 2014;100:135–9. https://doi.org/10.1136/heartjnl-2013-304786.
Article
Google Scholar
Tischfield JA. A reassessment of the low molecular weight phospholipase A2 gene family in mammals*. J Biol Chem. 1997;272:17247–50. https://doi.org/10.1074/jbc.272.28.17247.
CAS
Article
PubMed
Google Scholar
Exeter HJ, Folkersen L, Palmen J, Franco-Cereceda A, Cooper JA, Kalea AZ, VanHooft F, Eriksson P, Humphries SE, Talmud PJ. Functional analysis of two PLA2G2A variants associated with secretory phospholipase A2-IIA levels. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0041139.
Article
PubMed
PubMed Central
Google Scholar
Leonarduzzi G, Gamba P, Gargiulo S, Biasi F, Poli G. Inflammation-related gene expression by lipid oxidation-derived products in the progression of atherosclerosis. Free Radic Biol Med. 2012;52:19–34. https://doi.org/10.1016/j.freeradbiomed.2011.09.031.
CAS
Article
PubMed
Google Scholar
Chen Z, Zhao T-J, Li J, Gao Y-S, Meng F-G, Yan Y-B, Zhou H-M. Slow skeletal muscle myosin-binding protein-C (MyBPC1) mediates recruitment of muscle-type creatine kinase (CK) to myosin. Biochem J. 2011;436:437–45. https://doi.org/10.1042/BJ20102007.
CAS
Article
PubMed
Google Scholar
Xu Y-H, Deng J-L, Wang L-P, Zhang H-B, Tang L, Huang Y, Tang J, Wang S-M, Wang G. Identification of candidate genes associated with breast cancer prognosis. DNA Cell Biol. 2020;39:1205–27. https://doi.org/10.1089/dna.2020.5482.
CAS
Article
PubMed
Google Scholar
Essone PN, Chegou NN, Loxton AG, Stanley K, Kriel M, van der Spuy G, Franken KL, Ottenhoff TH, Walzl G. Host cytokine responses induced after overnight stimulation with novel M tuberculosis infection phase-dependent antigens show promise as diagnostic candidates for TB disease. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0102584.
Article
PubMed
PubMed Central
Google Scholar
Eribo OA, Leqheka MS, Malherbe ST, McAnda S, Stanley K, van der Spuy GD, Walzl G, Chegou NN. Host urine immunological biomarkers as potential candidates for the diagnosis of tuberculosis. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2020;99:473–81. https://doi.org/10.1016/j.ijid.2020.08.019.
CAS
Article
Google Scholar
Jacobs R, Maasdorp E, Malherbe S, Loxton AG, Stanley K, van der Spuy G, Walzl G, Chegou NN. Diagnostic potential of novel salivary host biomarkers as candidates for the immunological diagnosis of tuberculosis disease and monitoring of tuberculosis treatment response. PLoS ONE. 2016;11: e0160546. https://doi.org/10.1371/journal.pone.0160546.
CAS
Article
PubMed
PubMed Central
Google Scholar
Adegbite BR, Edoa JR, Agbo PA, Dejon-Agobé JC, Essone PN, Lotola-Mougeni F, Ngwese MM, Mfoumbi A, Mevyann C, Epola M, Zinsou JF, Honkpehedji YJ, Agnandji ST, et al. Epidemiological, mycobacteriological, and clinical characteristics of smoking pulmonary tuberculosis patients, in lambaréné, gabon: a cross-sectional study. Am J Trop Med Hyg. 2020;103:2501–5. https://doi.org/10.4269/ajtmh.20-0424.
Article
PubMed
PubMed Central
Google Scholar
Russell DG, Cardona P-J, Kim M-J, Allain S, Altare F. Foamy macrophages and the progression of the human TB granuloma. Nat Immunol. 2009;10:943–8. https://doi.org/10.1038/ni.1781.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chegou NN, Black GF, Loxton AG, Stanley K, Essone PN, Klein MR, Parida SK, Kaufmann SH, Doherty TM, Friggen AH, Franken KL, Ottenhoff TH, Walzl G. Potential of novel Mycobacterium tuberculosis infection phase-dependent antigens in the diagnosis of TB disease in a high burden setting. BMC Infect Dis. 2012;12:10. https://doi.org/10.1186/1471-2334-12-10.
CAS
Article
PubMed
PubMed Central
Google Scholar
Awoniyi DO, Teuchert A, Sutherland JS, Mayanja-Kizza H, Howe R, Mihret A, Loxton AG, Sheehama J, Kassa D, Crampin AC, Dockrell HM, Kidd M, Rosenkrands I, et al. Evaluation of cytokine responses against novel Mtb antigens as diagnostic markers for TB disease. J Infect. 2016;73:219–30. https://doi.org/10.1016/j.jinf.2016.04.036.
Article
PubMed
Google Scholar
Fisher ML, Kelemen MH, Collins D, Morris F, Moran GW, Carliner NH, Plotnick GD. Routine serum enzyme tests in the diagnosis of acute myocardial infarction: cost-effectiveness. Arch Intern Med. 1983;143:1541–3. https://doi.org/10.1001/archinte.1983.00350080047012.
CAS
Article
PubMed
Google Scholar
Brownlow K, Elevitch FR. serum creatine phosphokinase isoenzyme (CPK2) in myositis: a report of six cases. JAMA. 1974;230:1141–4. https://doi.org/10.1001/jama.1974.03240080023020.
CAS
Article
PubMed
Google Scholar
Goldman J, Matz R, Mortimer R, Freeman R. High elevations of creatine phosphokinase in hypothyroidism: an isoenzyme analysis. JAMA. 1977;238:325–6. https://doi.org/10.1001/jama.1977.03280040045018.
CAS
Article
PubMed
Google Scholar
Zheng J, Zheng H, Gupta RK, Li H, Shi H, Pan L, Gong S, Liang H. Interrelationship of rotavirus infection and creatine kinase-MB isoenzyme levels in children hospitalized with acute gastroenteritis in Guangzhou, China 2012–2015. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-07636-4.
Article
PubMed
PubMed Central
Google Scholar
Lakshman A, Balasubramanian P, Nampoothiri RV, Vijayvergiya R, Bhalla A, Varma SC. Elevated cardiac biomarkers and echocardiographic left ventricular dysfunction at admission in patients with dengue fever: report from a tertiary care center in Northwest India. Trop Doct. 2018;48:261–5. https://doi.org/10.1177/0049475518785315.
Article
PubMed
Google Scholar
Agudelo-Salas IY, Quinceno N, Duque J, Bosch I, Restrepo BN. Serum activity of CK and CK-MB in patients with dengue virus infection. Rev Salud Publica Bogota Colomb. 2017;19:460–7. https://doi.org/10.15446/rsap.v19n4.39597.
Article
Google Scholar
Usui A, Fujita K, Imaizumi M, Abe T, Inoue K, Matumoto S, Kato K. Determination of creatine kinase isozymes in sera and tissues of patients with various lung carcinomas. Clin Chim Acta. 1987;164:47–53. https://doi.org/10.1016/0009-8981(87)90106-9.
CAS
Article
PubMed
Google Scholar
Shafi AMA, Shaikh SA, Shirke MM, Iddawela S, Harky A. Cardiac manifestations in COVID-19 patients—a systematic review. J Card Surg. 2020;35:1988–2008. https://doi.org/10.1111/jocs.14808.
Article
PubMed
PubMed Central
Google Scholar
Han H, Xie L, Liu R, Yang J, Liu F, Wu K, Chen L, Hou W, Feng Y, Zhu C. Analysis of heart injury laboratory parameters in 273 COVID-19 patients in one hospital in Wuhan China. J Med Virol. 2020. https://doi.org/10.1002/jmv.25809.
Article
PubMed
PubMed Central
Google Scholar
Shi L, Wang Y, Wang Y, Duan G, Yang H. Meta-analysis of relation of creatine kinase-MB to risk of mortality in coronavirus disease 2019 patients. Am J Cardiol. 2020;130:163–5. https://doi.org/10.1016/j.amjcard.2020.06.004.
CAS
Article
PubMed
PubMed Central
Google Scholar
Henry BM, Benoit SW, de Oliveira MHS, Hsieh WC, Benoit J, Ballout RA, Plebani M, Lippi G. Laboratory abnormalities in children with mild and severe coronavirus disease 2019 (COVID-19): a pooled analysis and review. Clin Biochem. 2020;81:1. https://doi.org/10.1016/j.clinbiochem.2020.05.012.
CAS
Article
PubMed
PubMed Central
Google Scholar
Harrington-Kandt R, Stylianou E, Eddowes LA, Lim PJ, Stockdale L, Pinpathomrat N, Bull N, Pasricha J, Ulaszewska M, Beglov Y, Vaulont S, Drakesmith H, McShane H. Hepcidin deficiency and iron deficiency do not alter tuberculosis susceptibility in a murine Mtb infection model. PLoS ONE. 2018. https://doi.org/10.1371/journal.pone.0191038.
Article
PubMed
PubMed Central
Google Scholar
Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3. https://doi.org/10.1126/science.1104742.
CAS
Article
PubMed
Google Scholar