Skip to main content
Log in

In search for a synergistic combination against pandrug-resistant A. baumannii; methodological considerations

  • Review
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Purpose

Pending approval of new antimicrobials, synergistic combinations are the only treatment option against pandrug-resistant A. baumannii (PDRAB). Considering the lack of a standardized methodology, the aim of this manuscript is to systematically review the methodology and discuss unique considerations for assessing antimicrobial combinations against PDRAB.

Methods

Post-hoc analysis of a systematic review (conducted in PubMed and Scopus from inception to April 2021) of studies evaluating antimicrobial combination against A. baumannii, based on antimicrobials that are inactive in vitro alone.

Results

Eighty-four publications were reviewed, using a variety of synergy testing methods, including; gradient-based methods (n = 11), disk-based methods (n = 6), agar dilution (n = 2), checkerboard assay (n = 44), time-kill assay (n = 50), dynamic in vitro PK/PD models (n = 6), semi-mechanistic PK/PD models (n = 5), and in vivo animal models (n = 11). Several variations in definitions of synergy and interpretation of each method were observed and are discussed. Challenges related to testing combinations of antimicrobials that are inactive alone (with regards to concentrations at which the combinations are assessed), as well as other considerations (assessment of stasis vs killing, clinical relevance of re-growth in vitro after initial killing, role of in vitro vs in vivo conditions, challenges of clinical testing of antimicrobial combinations against PDRAB infections) are discussed.

Conclusion

This review demonstrates the need for consensus on a standardized methodology and clinically relevant definitions for synergy. Modifications in the methodology and definitions of synergy as well as a roadmap for further development of antimicrobial combinations against PDRAB are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Karakonstantis S, Kritsotakis EI, Gikas A. Pandrug-resistant Gram-negative bacteria: a systematic review of current epidemiology, prognosis and treatment options. J Antimicrob Chemother. 2019;75:271–82.

    Google Scholar 

  2. Karakonstantis S, Kritsotakis E, Gikas A. Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline. An approach based on the mechanisms of resistance to carbapenems. Infection. 2020;48:835–51.

    Article  CAS  PubMed  Google Scholar 

  3. Karakonstantis S, Gikas A, Astrinaki E, Kritsotakis EI. Excess mortality due to pandrug-resistant Acinetobacter baumannii infections in hospitalized patients. J Hosp Infect. 2020;106:447–53.

    Article  CAS  PubMed  Google Scholar 

  4. Choby JE, Ozturk T, Satola SW, Jacob JT, Weiss DS. Widespread cefiderocol heteroresistance in carbapenem-resistant Gram-negative pathogens. Lancet Infect Dis. 2021;21:597–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karakonstantis S, Saridakis I. Colistin heteroresistance in Acinetobacter spp.; systematic review and meta-analysis of the prevalence and discussion of the mechanisms and potential therapeutic implications. Int J Antimicrob Agents. 2020;56:106065.

    Article  CAS  PubMed  Google Scholar 

  6. Karakonstantis S. A systematic review of implications, mechanisms, and stability of in vivo emergent resistance to colistin and tigecycline in Acinetobacter baumannii. J Chemother. 2020;33:1–11.

    Article  PubMed  Google Scholar 

  7. Heil EL, Tamma PD. Cefiderocol: the Trojan horse has arrived but will Troy fall? Lancet Infect Dis. 2021;21:153–5.

    Article  CAS  PubMed  Google Scholar 

  8. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.

    Article  CAS  PubMed  Google Scholar 

  9. Karakonstantis S, Ioannou P, Samonis G, Kofteridis DP. Systematic review of antimicrobial combination options for pandrug-resistant Acinetobacter baumannii. Antibiotics (Basel). 2021;10:1344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5:210.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Karakonstantis S. Re: “Colistin plus meropenem for carbapenem-resistant Gram-negative infections: in vitro synergism is not associated with better clinical outcomes” by Nutman et al. Clin Microbiol Infect. 2020;26:1274.

    Article  CAS  PubMed  Google Scholar 

  12. Karakonstantis S, Kritsotakis E. Systematic review and meta-analysis of the proportion and associated mortality of polymicrobial (versus monomicrobial) pulmonary and bloodstream infections by Acinetobacter baumannii complex. Infection. 2021. https://doi.org/10.1007/s15010-021-01663-0.

    Article  PubMed  Google Scholar 

  13. Karakonstantis SK, Evangelos I, Gikas A. Is pandrug-resistance in A. baumannii a transient phenotype? Epidemiological clues from a 4-year cohort study at a tertiary referral hospital in Greece. J Chemother. 2020. https://doi.org/10.1080/1120009X.2020.1839689.

    Article  PubMed  Google Scholar 

  14. Cebrero-Cangueiro T, Nordmann P, Carretero-Ledesma M, Pachón J, Pachón-Ibáñez ME. Efficacy of dual carbapenem treatment in a murine sepsis model of infection due to carbapenemase-producing Acinetobacter baumannii. J Antimicrob Chemother. 2021;76:680–3.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng J, Yan J, Reyna Z, et al. Synergistic rifabutin and colistin reduce emergence of resistance when treating Acinetobacter baumannii. Antimicrob Agents Chemother. 2021;65: e02204-20.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nwabor OF, Terbtothakun P, Voravuthikunchai SP, Chusri S. Evaluation of the synergistic antibacterial effects of fosfomycin in combination with selected antibiotics against carbapenem-resistant Acinetobacter baumannii. Pharmaceuticals. 2021;14:185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Armengol E, Asunción T, Viñas M, Sierra JM. When combined with colistin, an otherwise ineffective rifampicin-linezolid combination becomes active in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Microorganisms. 2020;8:86.

    Article  CAS  PubMed Central  Google Scholar 

  18. Li J, Fu Y, Zhang J, et al. The efficacy of colistin monotherapy versus combination therapy with other antimicrobials against carbapenem-resistant Acinetobacter baumannii ST2 isolates. J Chemother. 2020;32:359–67.

    Article  CAS  PubMed  Google Scholar 

  19. Limsrivanichakorn S, Ngamskulrungroj P, Leelaporn A. Activity of antimicrobial combinations against extensively drug-resistant Acinetobacter baumannii as determined by checkerboard method and E-test. Siriraj Med J. 2020;72:214–8.

    Article  Google Scholar 

  20. Mohd Sazlly Lim S, Naicker S, Ayfan AK, Zowawi H, Roberts JA, Sime FB. Non-polymyxin-based combinations as potential alternatives in treatment against carbapenem-resistant Acinetobacter baumannii infections. Int J Antimicrob Agents. 2020;56:106115.

    Article  CAS  PubMed  Google Scholar 

  21. Mohdsazlly Lim S, Heffernan AJ, Roberts JA, Sime FB. Semi-mechanistic PK/PD modelling of fosfomycin and sulbactam combination against carbapenem-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2021. https://doi.org/10.1128/aac.02472-20.

    Article  PubMed  Google Scholar 

  22. Mohd Sazlly Lim S, Heffernan AJ, Roberts JA, Sime FB. Pharmacodynamic analysis of meropenem and fosfomycin combination against carbapenem-resistant Acinetobacter baumannii in patients with normal renal clearance: can it be a treatment option? Microb Drug Resist. 2021;27:546–52.

    Article  CAS  PubMed  Google Scholar 

  23. Nordmann P, Perler J, Kieffer N, Poirel L. In-vitro evaluation of a dual carbapenem combination against carbapenemase-producing Acinetobacter baumannii. J Infect. 2020;80:121–42.

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez CH, Brune A, Nastro M, Vay C, Famiglietti A. In vitro synergistic activity of the sulbactam/avibactam combination against extensively drug-resistant Acinetobacter baumannii. J Med Microbiol. 2020;69:928–31.

    Article  CAS  PubMed  Google Scholar 

  25. Gaudereto JJ, Perdigão Neto LV, Leite GC, et al. Synergistic effect of ceftazidime-avibactam with meropenem against panresistant, carbapenemase-harboring Acinetobacter baumannii and Serratia marcescens investigated using time-kill and disk approximation assays. Antimicrob Agents Chemother. 2019;63: e02367-18.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ghaith D, Hassan R, Dawoud MEE, Eweis M, Metwally R, Zafer M. Effect of rifampicin-colistin combination against XDR Acinetobacter baumannii harbouring bla(OXA 23)-like gene and showed reduced susceptibility to colistin at Cairo University Hospital, Cairo, Egypt. Infect Dis (Lond). 2019;51:308–11.

    Article  Google Scholar 

  27. Mataracı Kara E, Yılmaz M, Özbek ÇB. In vitro activities of ceftazidime/avibactam alone or in combination with antibiotics against multidrug-resistant Acinetobacter baumannii isolates. J Glob Antimicrob Resist. 2019;17:137–41.

    Article  PubMed  Google Scholar 

  28. Menegucci TC, Fedrigo NH, Lodi FG, et al. Pharmacodynamic effects of sulbactam/meropenem/polymyxin-B combination against extremely drug resistant Acinetobacter baumannii using checkerboard information. Microb Drug Resist. 2019;25:1266–74.

    Article  CAS  PubMed  Google Scholar 

  29. Oliva A, Garzoli S, De Angelis M, et al. In-vitro evaluation of different antimicrobial combinations with and without colistin against carbapenem-resistant Acinetobacter baumannii. Molecules. 2019;24:886.

    Article  PubMed Central  CAS  Google Scholar 

  30. Ozger HS, Cuhadar T, Yildiz SS, et al. In vitro activity of eravacycline in combination with colistin against carbapenem-resistant A. baumannii isolates. J Antibiot (Tokyo). 2019;72:600–4.

    Article  CAS  Google Scholar 

  31. Phee LM, Kloprogge F, Morris R, Barrett J, Wareham DW, Standing JF. Pharmacokinetic–pharmacodynamic modelling to investigate in vitro synergy between colistin and fusidic acid against MDR Acinetobacter baumannii. J Antimicrob Chemother. 2019;74:961–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Poulakou G, Renieris G, Sabrakos L, et al. Daptomycin as adjunctive treatment for experimental infection by Acinetobacter baumannii with resistance to colistin. Int J Antimicrob Agents. 2018. https://doi.org/10.1016/j.ijantimicag.2018.10.024.

    Article  PubMed  Google Scholar 

  33. Shinohara DR, Menegucci TC, Fedrigo NH, et al. Synergistic activity of polymyxin B combined with vancomycin against carbapenem-resistant and polymyxin-resistant Acinetobacter baumannii: first in vitro study. J Med Microbiol. 2019;68:309–15.

    Article  CAS  PubMed  Google Scholar 

  34. Wang J, Ning Y, Li S, et al. Multidrug-resistant Acinetobacter baumannii strains with NDM-1: molecular characterization and in vitro efficacy of meropenem-based combinations. Exp Ther Med. 2019;18:2924–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen F, Wang L, Wang M, et al. Genetic characterization and in vitro activity of antimicrobial combinations of multidrug-resistant Acinetobacter baumannii from a general hospital in China. Oncol Lett. 2018;15:2305–15.

    PubMed  Google Scholar 

  36. Singkham-In U, Chatsuwan T. In vitro activities of carbapenems in combination with amikacin, colistin, or fosfomycin against carbapenem-resistant Acinetobacter baumannii clinical isolates. Diagn Microbiol Infect Dis. 2018;91:169–74.

    Article  CAS  PubMed  Google Scholar 

  37. Zhu W, Wang Y, Cao W, Cao S, Zhang J. In vitro evaluation of antimicrobial combinations against imipenem-resistant Acinetobacter baumannii of different MICs. J Infect Public Health. 2018;11:856–60.

    Article  PubMed  Google Scholar 

  38. Lenhard JR, Thamlikitkul V, Silveira FP, et al. Polymyxin-resistant, carbapenem-resistant Acinetobacter baumannii is eradicated by a triple combination of agents that lack individual activity. J Antimicrob Chemother. 2017;72:1415–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lenhard JR, Smith NM, Bulman ZP, et al. High-dose ampicillin-sulbactam combinations combat polymyxin-resistant Acinetobacter baumannii in a hollow-fiber infection model. Antimicrob Agents Chemother. 2017;61:e01268-e1316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Madadi-Goli N, Moniri R, Bagheri-Josheghani S, Dasteh-Goli N. Sensitivity of levofloxacin in combination with ampicillin-sulbactam and tigecycline against multidrug-resistant Acinetobacter baumannii. Iran J Microbiol. 2017;9:19–25.

    PubMed  PubMed Central  Google Scholar 

  41. Wei W, Yang H, Hu L, Ye Y, Li J. Activity of levofloxacin in combination with colistin against Acinetobacter baumannii: in vitro and in a Galleria mellonella model. J Microbiol Immunol Infect. 2017;50:821–30.

    Article  CAS  PubMed  Google Scholar 

  42. Wei WJ, Yang HF. Synergy against extensively drug-resistant Acinetobacter baumannii in vitro by two old antibiotics: colistin and chloramphenicol. Int J Antimicrob Agents. 2017;49:321–6.

    Article  CAS  PubMed  Google Scholar 

  43. Bae S, Kim M-C, Park S-J, et al. In vitro synergistic activity of antimicrobial agents in combination against clinical isolates of colistin-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2016;60:6774–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bowler SL, Spychala CN, McElheny CL, Mettus RT, Doi Y. In vitro activity of fusidic acid-containing combinations against carbapenem-resistant Acinetobacter baumannii clinical strains. Antimicrob Agents Chemother. 2016;60:5101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hong DJ, Kim JO, Lee H, et al. In vitro antimicrobial synergy of colistin with rifampicin and carbapenems against colistin-resistant Acinetobacter baumannii clinical isolates. Diagn Microbiol Infect Dis. 2016;86:184–9.

    Article  CAS  PubMed  Google Scholar 

  46. Laishram S, Anandan S, Devi BY, et al. Determination of synergy between sulbactam, meropenem and colistin in carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii isolates and correlation with the molecular mechanism of resistance. J Chemother. 2016;28:297–303.

    Article  CAS  PubMed  Google Scholar 

  47. Leite GC, Oliveira MS, Perdigao-Neto LV, et al. Antimicrobial combinations against pan-resistant Acinetobacter baumannii isolates with different resistance mechanisms. PLoS One. 2016;11: e0151270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Menegucci TC, Albiero J, Migliorini LB, et al. Strategies for the treatment of polymyxin B-resistant Acinetobacter baumannii infections. Int J Antimicrob Agents. 2016;47:380–5.

    Article  CAS  PubMed  Google Scholar 

  49. Yang H, Lv N, Hu L, et al. In vivo activity of vancomycin combined with colistin against multidrug-resistant strains of Acinetobacter baumannii in a Galleria mellonella model. Infect Dis (Lond). 2016;48:189–94.

    Article  CAS  Google Scholar 

  50. Yang YS, Lee Y, Tseng KC, et al. In vivo and in vitro efficacy of minocycline-based combination therapy for minocycline-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2016;60:4047–54.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yavaş S, Yetkin MA, Kayaaslan B, et al. Investigating the in vitro synergistic activities of several antibiotic combinationsagainst carbapenem-resistant Acinetobacter baumannii isolates. Turk J Med Sci. 2016;46:892–6.

    Article  PubMed  CAS  Google Scholar 

  52. Córdoba J, Coronado-Álvarez NM, Parra D, Parra-Ruiz J. In vitro activities of novel antimicrobial combinations against extensively drug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2015;59:7316–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. García-Salguero C, Rodríguez-Avial I, Picazo JJ, Culebras E. Can plazomicin alone or in combination be a therapeutic option against carbapenem-resistant Acinetobacter baumannii? Antimicrob Agents Chemother. 2015;59:5959–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Marie MA, Krishnappa LG, Alzahrani AJ, Mubaraki MA, Alyousef AA. A prospective evaluation of synergistic effect of sulbactam and tazobactam combination with meropenem or colistin against multidrug resistant Acinetobacter baumannii. Bosn J Basic Med Sci. 2015;15:24–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Phee LM, Betts JW, Bharathan B, Wareham DW. Colistin and fusidic acid, a novel potent synergistic combination for treatment of multidrug-resistant Acinetobacter baumannii infections. Antimicrob Agents Chemother. 2015;59:4544–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rodríguez CH, Nastro M, Vay C, Famiglietti A. In vitro activity of minocycline alone or in combination in multidrug-resistant Acinetobacter baumannii isolates. J Med Microbiol. 2015;64:1196–200.

    Article  PubMed  CAS  Google Scholar 

  57. Vourli S, Frantzeskaki F, Meletiadis J, et al. Synergistic interactions between colistin and meropenem against extensively drug-resistant and pandrug-resistant Acinetobacter baumannii isolated from ICU patients. Int J Antimicrob Agents. 2015;45:670–1.

    Article  CAS  PubMed  Google Scholar 

  58. Galani I, Orlandou K, Moraitou H, Petrikkos G, Souli M. Colistin/daptomycin: an unconventional antimicrobial combination synergistic in vitro against multidrug-resistant Acinetobacter baumannii. Int J Antimicrob Agents. 2014;43:370–4.

    Article  CAS  PubMed  Google Scholar 

  59. Majewski P, Wieczorek P, Ojdana D, Sacha PT, Wieczorek A, Tryniszewska EA. In vitro activity of rifampicin alone and in combination with imipenem against multidrug-resistant Acinetobacter baumannii harboring the blaOXA-72 resistance gene. Scand J Infect Dis. 2014;46:260–4.

    Article  CAS  PubMed  Google Scholar 

  60. Nastro M, Rodríguez CH, Monge R, et al. Activity of the colistin-rifampicin combination against colistin-resistant, carbapenemase-producing Gram-negative bacteria. J Chemother. 2014;26:211–6.

    Article  CAS  PubMed  Google Scholar 

  61. Oleksiuk LM, Nguyen MH, Press EG, et al. In vitro responses of Acinetobacter baumannii to two- and three-drug combinations following exposure to colistin and doripenem. Antimicrob Agents Chemother. 2014;58:1195–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Percin D, Akyol S, Kalin G. In vitro synergism of combinations of colistin with selected antibiotics against colistin-resistant Acinetobacter baumannii. GMS Hyg Infect Control. 2014;9:Doc14.

    PubMed  PubMed Central  Google Scholar 

  63. Sun Y, Wang L, Li J, et al. Synergistic efficacy of meropenem and rifampicin in a murine model of sepsis caused by multidrug-resistant Acinetobacter baumannii. Eur J Pharmacol. 2014;729:116–22.

    Article  CAS  PubMed  Google Scholar 

  64. Wang Y, Bao W, Guo N, et al. Antimicrobial activity of the imipenem/rifampicin combination against clinical isolates of Acinetobacter baumannii grown in planktonic and biofilm cultures. World J Microbiol Biotechnol. 2014;30:3015–25.

    Article  CAS  PubMed  Google Scholar 

  65. Cetin ES, Tekeli A, Ozseven AG, Us E, Aridogan BC. Determination of in vitro activities of polymyxin B and rifampin in combination with ampicillin/sulbactam or cefoperazone/sulbactam against multidrug-resistant Acinetobacter baumannii by the E-test and checkerboard methods. Jpn J Infect Dis. 2013;66:463–8.

    Article  PubMed  Google Scholar 

  66. Housman ST, Hagihara M, Nicolau DP, Kuti JL. In vitro pharmacodynamics of human-simulated exposures of ampicillin/sulbactam, doripenem and tigecycline alone and in combination against multidrug-resistant Acinetobacter baumannii. J Antimicrob Chemother. 2013;68:2296–304.

    CAS  PubMed  Google Scholar 

  67. Lee HJ, Bergen PJ, Bulitta JB, et al. Synergistic activity of colistin and rifampin combination against multidrug-resistant Acinetobacter baumannii in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother. 2013;57:3738–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. O’Hara JA, Ambe LA, Casella LG, et al. Activities of vancomycin-containing regimens against colistin-resistant Acinetobacter baumannii clinical strains. Antimicrob Agents Chemother. 2013;57:2103–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Principe L, Capone A, Mazzarelli A, et al. In vitro activity of doripenem in combination with various antimicrobials against multidrug-resistant Acinetobacter baumannii: possible options for the treatment of complicated infection. Microb Drug Resist. 2013;19:407–14.

    Article  CAS  PubMed  Google Scholar 

  70. Queenan AM, Davies TA, He W, Lynch AS. Assessment of the combination of doripenem plus a fluoroquinolone against non-susceptible Acinetobacter baumannii isolates from nosocomial pneumonia patients. J Chemother. 2013;25:141–7.

    Article  CAS  PubMed  Google Scholar 

  71. Deveci A, Coban AY, Acicbe O, Tanyel E, Yaman G, Durupinar B. In vitro effects of sulbactam combinations with different antibiotic groups against clinical Acinetobacter baumannii isolates. J Chemother. 2012;24:247–52.

    Article  CAS  PubMed  Google Scholar 

  72. Peck KR, Kim MJ, Choi JY, et al. In vitro time-kill studies of antimicrobial agents against blood isolates of imipenem-resistant Acinetobacter baumannii, including colistin- or tigecycline-resistant isolates. J Med Microbiol. 2012;61:353–60.

    Article  CAS  PubMed  Google Scholar 

  73. Vidaillac C, Benichou L, Duval RE. In vitro synergy of colistin combinations against colistin-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae isolates. Antimicrob Agents Chemother. 2012;56:4856–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pachón-Ibáñez ME, Docobo-Pérez F, Jiménez-Mejias ME, et al. Efficacy of rifampin, in monotherapy and in combinations, in an experimental murine pneumonia model caused by panresistant Acinetobacter baumannii strains. Eur J Clin Microbiol Infect Dis. 2011;30:895–901.

    Article  PubMed  CAS  Google Scholar 

  75. Santimaleeworagun W, Wongpoowarak P, Chayakul P, Pattharachayakul S, Tansakul P, Garey KW. In vitro activity of colistin or sulbactam in combination with fosfomycin or imipenem against clinical isolates of carbapenem-resistant Acinetobacter baumannii producing OXA-23 carbapenemases. Southeast Asian J Trop Med Public Health. 2011;42:890–900.

    CAS  PubMed  Google Scholar 

  76. Tan TY, Lim TP, Lee WH, Sasikala S, Hsu LY, Kwa AL. In vitro antibiotic synergy in extensively drug-resistant Acinetobacter baumannii: the effect of testing by time-kill, checkerboard, and Etest methods. Antimicrob Agents Chemother. 2011;55:436–8.

    Article  CAS  PubMed  Google Scholar 

  77. Kiratisin P, Apisarnthanarak A, Kaewdaeng S. Synergistic activities between carbapenems and other antimicrobial agents against Acinetobacter baumannii including multidrug-resistant and extensively drug-resistant isolates. Int J Antimicrob Agents. 2010;36:243–6.

    Article  CAS  PubMed  Google Scholar 

  78. Pachón-Ibáñez ME, Docobo-Pérez F, López-Rojas R, et al. Efficacy of rifampin and its combinations with imipenem, sulbactam, and colistin in experimental models of infection caused by imipenem-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2010;54:1165–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Pankuch GA, Seifert H, Appelbaum PC. Activity of doripenem with and without levofloxacin, amikacin, and colistin against Pseudomonas aeruginosa and Acinetobacter baumannii. Diagn Microbiol Infect Dis. 2010;67:191–7.

    Article  CAS  PubMed  Google Scholar 

  80. Rodriguez CH, De Ambrosio A, Bajuk M, et al. In vitro antimicrobials activity against endemic Acinetobacter baumannii multiresistant clones. J Infect Dev Ctries. 2010;4:164–7.

    Article  CAS  PubMed  Google Scholar 

  81. Urban C, Mariano N, Rahal JJ. In vitro double and triple bactericidal activities of doripenem, polymyxin B, and rifampin against multidrug-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. Antimicrob Agents Chemother. 2010;54:2732–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yuan Z, Ledesma KR, Singh R, Hou J, Prince RA, Tam VH. Quantitative assessment of combination antimicrobial therapy against multidrug-resistant bacteria in a murine pneumonia model. J Infect Dis. 2010;201:889–97.

    Article  CAS  PubMed  Google Scholar 

  83. Lim TP, Tan TY, Lee W, et al. In vitro activity of various combinations of antimicrobials against carbapenem-resistant Acinetobacter species in Singapore. J Antibiot (Tokyo). 2009;62:675–9.

    Article  CAS  Google Scholar 

  84. Principe L, D’Arezzo S, Capone A, Petrosillo N, Visca P. In vitro activity of tigecycline in combination with various antimicrobials against multidrug resistant Acinetobacter baumannii. Ann Clin Microbiol Antimicrob. 2009;8:18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Song JY, Cheong HJ, Lee J, Sung AK, Kim WJ. Efficacy of monotherapy and combined antibiotic therapy for carbapenem-resistant Acinetobacter baumannii pneumonia in an immunosuppressed mouse model. Int J Antimicrob Agents. 2009;33:33–9.

    Article  CAS  PubMed  Google Scholar 

  86. Lee CH, Tang YF, Su LH, Chien CC, Liu JW. Antimicrobial effects of varied combinations of meropenem, sulbactam, and colistin on a multidrug-resistant Acinetobacter baumannii isolate that caused meningitis and bacteremia. Microb Drug Resist. 2008;14:233–7.

    Article  CAS  PubMed  Google Scholar 

  87. Lim TP, Ledesma KR, Chang KT, et al. Quantitative assessment of combination antimicrobial therapy against multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2008;52:2898–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee NY, Wang CL, Chuang YC, et al. Combination carbapenem-sulbactam therapy for critically ill patients with multidrug-resistant Acinetobacter baumannii bacteremia: four case reports and an in vitro combination synergy study. Pharmacotherapy. 2007;27:1506–11.

    Article  CAS  PubMed  Google Scholar 

  89. Sader HS, Rhomberg PR, Jones RN. In vitro activity of beta-lactam antimicrobial agents in combination with aztreonam tested against metallo-beta-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii. J Chemother. 2005;17:622–7.

    Article  CAS  PubMed  Google Scholar 

  90. Sader HS, Jones RN. Comprehensive in vitro evaluation of cefepime combined with aztreonam or ampicillin/sulbactam against multi-drug resistant Pseudomonas aeruginosa and Acinetobacter spp. Int J Antimicrob Agents. 2005;25:380–4.

    Article  CAS  PubMed  Google Scholar 

  91. Choi JY, Park YS, Cho CH, et al. Synergic in-vitro activity of imipenem and sulbactam against Acinetobacter baumannii. Clin Microbiol Infect. 2004;10:1098–101.

    Article  CAS  PubMed  Google Scholar 

  92. Jung R, Husain M, Choi MK, Fish DN. Synergistic activities of moxifloxacin combined with piperacillin-tazobactam or cefepime against Klebsiella pneumoniae, Enterobacter cloacae, and Acinetobacter baumannii clinical isolates. Antimicrob Agents Chemother. 2004;48:1055–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Montero A, Ariza J, Corbella X, et al. Antibiotic combinations for serious infections caused by carbapenem-resistant Acinetobacter baumannii in a mouse pneumonia model. J Antimicrob Chemother. 2004;54:1085–91.

    Article  CAS  PubMed  Google Scholar 

  94. Yoon J, Urban C, Terzian C, Mariano N, Rahal JJ. In vitro double and triple synergistic activities of Polymyxin B, imipenem, and rifampin against multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2004;48:753–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fernández-Cuenca F, Martínez-Martínez L, Pascual A, Perea EJ. In vitro activity of azithromycin in combination with amikacin, ceftazidime, ciprofloxacin or imipenem against clinical isolates of Acinobacter baumannii. Chemotherapy. 2003;49:24–6.

    Article  PubMed  CAS  Google Scholar 

  96. Roussel-Delvallez M, Wallet F, Delpierre F, Courcol RJ. In vitro bactericidal effect of a beta-lactam + aminoglycoside combination against multiresistant Pseudomonas aeruginosa and Acinetobacter baumannii. J Chemother. 1996;8:365–8.

    Article  CAS  PubMed  Google Scholar 

  97. Park GC, Choi JA, Jang SJ, et al. In vitro interactions of antibiotic combinations of colistin, tigecycline, and doripenem against extensively drug-resistant and multidrug-resistant Acinetobacter baumannii. Ann Lab Med. 2016;36:124–30.

    Article  CAS  PubMed  Google Scholar 

  98. Pillai SK, Moellering RC, Eliopoulos GM. Antimicrobial combinations. In: Lorian V (editor) Antibiotics in laboratory medicine. 5th ed. Philadelphia: Lippincott Williams and Wilkins; 2005.

  99. Bonapace CR, Bosso JA, Friedrich LV, White RL. Comparison of methods of interpretation of checkerboard synergy testing. Diagn Microbiol Infect Dis. 2002;44:363–6.

    Article  PubMed  Google Scholar 

  100. Brennan-Krohn T, Kirby JE. When one drug is not enough: context, methodology, and future prospects in antibacterial synergy testing. Clin Lab Med. 2019;39:345–58.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Brill MJE, Kristoffersson AN, Zhao C, Nielsen EI, Friberg LE. Semi-mechanistic pharmacokinetic–pharmacodynamic modelling of antibiotic drug combinations. Clin Microbiol Infect. 2018;24:697–706.

    Article  CAS  PubMed  Google Scholar 

  102. Khan A, Erickson SG, Pettaway C, Arias CA, Miller WR, Bhatti MM. Evaluation of susceptibility testing methods for aztreonam (ATM) and ceftazidime/avibactam (CZA) combination therapy on extensively drug-resistant Gram-negative organisms. Antimicrob Agents Chemother. 2021. https://doi.org/10.1128/aac.00846-21Aac0084621.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Falcone M, Daikos GL, Tiseo G, et al. Efficacy of ceftazidime-avibactam plus aztreonam in patients with bloodstream infections caused by MBL-producing Enterobacterales. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa586.

    Article  Google Scholar 

  104. Yasmin M, Fouts DE, Jacobs MR, et al. Monitoring ceftazidime-avibactam (CAZ-AVI) and aztreonam (ATM) concentrations in the treatment of a bloodstream infection caused by a multidrug-resistant Enterobacter sp. Carrying both KPC-4 and NDM-1 carbapenemases. Clin Infect Dis. 2019;71:1095–8.

    Article  PubMed Central  CAS  Google Scholar 

  105. Doern CD. When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J Clin Microbiol. 2014;52:4124–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Mohd Sazlly Lim S, Heffernan AJ, Zowawi HM, Roberts JA, Sime FB. Semi-mechanistic PK/PD modelling of meropenem and sulbactam combination against carbapenem-resistant strains of Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis. 2021;40:1943–52.

    Article  CAS  PubMed  Google Scholar 

  107. Zhu M, Tse MW, Weller J, Chen J, Blainey PC. The future of antibiotics begins with discovering new combinations. Ann N Y Acad Sci. 2021;1496:82–96.

    Article  PubMed  Google Scholar 

  108. Domalaon R, Idowu T, Zhanel GG, Schweizer F. Antibiotic hybrids: the next generation of agents and adjuvants against gram-negative pathogens? Clin Microbiol Rev. 2018;31: e00077-17.

    Article  PubMed  PubMed Central  Google Scholar 

  109. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0. http://www.eucast.org/. Accessed 1 Jan 2022.

  110. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 31st ed. CLSI supplement M100. Wayne: Clinical Laboratory Standards Institute; 2021.

  111. Wald-Dickler N, Holtom P, Spellberg B. Busting the myth of “Static vs Cidal”: a systemic literature review. Clin Infect Dis. 2018;66:1470–4.

    Article  CAS  PubMed  Google Scholar 

  112. Pankey GA, Sabath LD. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis. 2004;38:864–70.

    Article  CAS  PubMed  Google Scholar 

  113. Nemeth J, Oesch G, Kuster SP. Bacteriostatic versus bactericidal antibiotics for patients with serious bacterial infections: systematic review and meta-analysis. J Antimicrob Chemother. 2015;70:382–95.

    Article  CAS  PubMed  Google Scholar 

  114. Steigbigel RT, Steigbigel NH. Static vs cidal antibiotics. Clin Infect Dis. 2019;68:351–2.

    Article  PubMed  Google Scholar 

  115. Wald-Dickler N, Holtom P, Spellberg B. Reply to steigbigel and steigbigel. Clin Infect Dis. 2019;68:352–3.

    Article  PubMed  Google Scholar 

  116. Tängdén T, Lundberg CV, Friberg LE, Huttner A. How preclinical infection models help define antibiotic doses in the clinic. Int J Antimicrob Agents. 2020;56:106008.

    Article  PubMed  CAS  Google Scholar 

  117. El-Halfawy OM, Valvano MA. Antimicrobial heteroresistance: an emerging field in need of clarity. Clin Microbiol Rev. 2015;28:191–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Andersson DI, Nicoloff H, Hjort K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat Rev Microbiol. 2019;17:479–96.

    Article  CAS  PubMed  Google Scholar 

  119. Dillon N, Holland M, Tsunemoto H, et al. Surprising synergy of dual translation inhibition vs. Acinetobacter baumannii and other multidrug-resistant bacterial pathogens. EBioMedicine. 2019;46:193–201.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Luna B, Trebosc V, Lee B, et al. A nutrient-limited screen unmasks rifabutin hyperactivity for extensively drug-resistant Acinetobacter baumannii. Nat Microbiol. 2020;5:1134–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Trebosc V, Schellhorn B, Schill J, et al. In vitro activity of rifabutin against 293 contemporary carbapenem-resistant Acinetobacter baumannii clinical isolates and characterization of rifabutin mode of action and resistance mechanisms. J Antimicrob Chemother. 2020. https://doi.org/10.1093/jac/dkaa370.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Gill CM, Asempa TE, Nicolau DP. Human-simulated antimicrobial regimens in animal models: transparency and validation are imperative. Antimicrob Agents Chemother. 2020;64: e00594-20.

    Article  PubMed  PubMed Central  Google Scholar 

  123. McConnell MJ, Actis L, Pachón J. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev. 2013;37:130–55.

    Article  CAS  PubMed  Google Scholar 

  124. Gutierrez-Gutierrez B, Salamanca E, de Cueto M, et al. Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): a retrospective cohort study. Lancet Infect Dis. 2017;17:726–34.

    Article  PubMed  Google Scholar 

  125. Liao YT, Kuo SC, Lee YT, et al. Sheltering effect and indirect pathogenesis of carbapenem-resistant Acinetobacter baumannii in polymicrobial infection. Antimicrob Agents Chemother. 2014;58:3983–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Smith NM, Ang A, Tan F, et al. Interaction of Staphylococcus aureus and Acinetobacter baumannii during in vitro β-lactam exposure. Antimicrob Agents Chemother. 2021;65:e02414-e2420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bhargava N, Sharma P, Capalash N. N-acyl homoserine lactone mediated interspecies interactions between A. baumannii and P. aeruginosa. Biofouling. 2012;28:813–22.

    Article  CAS  PubMed  Google Scholar 

  128. Tsuji BT, Pogue JM, Zavascki AP, et al. International consensus guidelines for the optimal use of the polymyxins: endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy. 2019;39:10–39.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Farha MA, Brown ED. Drug repurposing for antimicrobial discovery. Nat Microbiol. 2019;4:565–77.

    Article  CAS  PubMed  Google Scholar 

  130. Ejim L, Farha MA, Falconer SB, et al. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat Chem Biol. 2011;7:348–50.

    Article  CAS  PubMed  Google Scholar 

  131. Song X, Wu Y, Cao L, Yao D, Long M. Is meropenem as a monotherapy truly incompetent for meropenem-nonsusceptible bacterial strains? A pharmacokinetic/pharmacodynamic modeling with Monte Carlo simulation. Front Microbiol. 2019;10:2777.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Wart SAV, Andes DR, Ambrose PG, Bhavnani SM. Pharmacokinetic–pharmacodynamic modeling to support doripenem dose regimen optimization for critically ill patients. Diagn Microbiol Infect Dis. 2009;63:409–14.

    Article  PubMed  CAS  Google Scholar 

  133. Asuphon O, Montakantikul P, Houngsaitong J, Kiratisin P, Sonthisombat P. Optimizing intravenous fosfomycin dosing in combination with carbapenems for treatment of Pseudomonas aeruginosa infections in critically ill patients based on pharmacokinetic/pharmacodynamic (PK/PD) simulation. Int J Infect Dis. 2016;50:23–9.

    Article  CAS  PubMed  Google Scholar 

  134. Jaruratanasirikul S, Wongpoowarak W, Wattanavijitkul T, et al. Population pharmacokinetics and pharmacodynamics modeling to optimize dosage regimens of sulbactam in critically ill patients with severe sepsis caused by Acinetobacter baumannii. Antimicrob Agents Chemother. 2016;60:7236–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jaruratanasirikul S, Nitchot W, Wongpoowarak W, Samaeng M, Nawakitrangsan M. Population pharmacokinetics and Monte Carlo simulations of sulbactam to optimize dosage regimens in patients with ventilator-associated pneumonia caused by Acinetobacter baumannii. Eur J Pharm Sci. 2019;136:104940.

    Article  CAS  PubMed  Google Scholar 

  136. Rodríguez CH, Nastro M, Weyland B, Losada M, Vay C, Famiglietti A. Bacteremias by Acinetobacter spp. and carbapenems resistance. Acta Bioquimica Clinica Latinoamericana. 2010;44:243–8.

    Google Scholar 

  137. Matuschek E, Ahman J, Webster C, Kahlmeter G. Antimicrobial susceptibility testing of colistin—evaluation of seven commercial MIC products against standard broth microdilution for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp. Clin Microbiol Infect. 2018;24:865–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Georgios Chamilos (Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Heraklion, Greece) for his critical input.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stamatis Karakonstantis.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakonstantis, S., Ioannou, P. & Kofteridis, D.D. In search for a synergistic combination against pandrug-resistant A. baumannii; methodological considerations. Infection 50, 569–581 (2022). https://doi.org/10.1007/s15010-021-01748-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-021-01748-w

Keywords

Navigation