Skip to main content

Advertisement

Log in

Bildgebung der Arthrose großer Gelenke im klinischen Alltag

Differenzierte Bilddiagnostik statt Minimalismus

  • Zertifizierte Fortbildung
  • Published:
Orthopädie & Rheuma Aims and scope

Zusammenfassung

Das konventionelle Röntgen dient als Basisdiagnostikum der Arthrose. Seine methodische Stärke ist die Darstellung ossärer Strukturen, anhand derer sich die für die fortgeschrittene Arthrose typischen sekundären Knochenveränderungen gut beurteilen lassen. Aufgrund der heutzutage differenzierten, oft gelenkerhaltenden, konservativen oder operativen therapeutischen und prophylaktischen Interventionsmöglichkeiten ist aber eine profunde Diagnostik mittels spezifischer Bildgebung wichtig. Daher sollte bei der Arthroseabklärung nicht zu „minimalistisch“ röntgenorientiert agiert, sondern die Möglichkeiten der erweiterten Schnittbildgebung, vorzugsweise die MRT, auch bedarfsorientiert genutzt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. S2k-Leitlinie Gonarthrose, AWMF Registernummer: 033-004. Federführende Fachgesellschaft: Deutsche Gesellschaft für Orthopädie und Orthopädische Chirurgie (DGOOC), Deutsche Gesellschaft für Orthopädie und Unfallchirurgie (DGOU). Stand 18.01.2018

  2. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthritis. Ann Rheum Dis 1957;16:494–502

    Article  CAS  Google Scholar 

  3. Sharma L, Kapoor D. Epidemiology of Osteoarthritis. In: Moskowitz RW et al. (Hrsg.): Osteoarthritis. Diagnosis, Medical/Surgical Management. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2007:3–26

    Google Scholar 

  4. Naal FD, Impellizzeri FM, Sieverding M, Loibl M, von Knoch F, Mannion AF, Leunig M, Munzinger U. The 12-item Oxford Knee Score: cross-cultural adaptation into German and assessment of its psychometric properties in patients with osteoarthritis of the knee. Osteoarthritis Cartilage 2009;17(1):49–52

    Article  CAS  Google Scholar 

  5. Roos EM, Roos HP, Lohmander LS. WOMAC Osteoarthritis Index - additional dimensions for use in subjects with post-traumatic osteoarthritis of the knee. Western Ontario and MacMaster Universities. Osteoarthritis Cartilage 1999;7(2):216–21

    CAS  PubMed  Google Scholar 

  6. Insall JN, Dorr LD, Scott RD, Scott WN. Rationale of the Knee Society clinical rating system. Clin Orthop Relat Res 1989;248:13–4

    Google Scholar 

  7. Roemer FW, Eckstein F, Guermazi A. Magnetic resonance imaging-based semiquantitative and quantitative assessment in osteoarthritis. Rheum Dis Clin North Am 2009;35:521–55

    Article  Google Scholar 

  8. Braunschweig R, Tiemann AHH. Bildgebung: Was wirklich nötig ist. OUP 2017;12:602–7

    Google Scholar 

  9. von Engelhardt LV, Jerosch J. Bildgebende Diagnostik der Arthrose im klinischen Alltag. OUP 2015;5:252–7

    Google Scholar 

  10. Falah M, Nierenberg G, Soudry M, Hayden M, Volpin G. Treatment of articular cartilage lesions of the knee. Int Orthop 2010;34:621–30

    Article  Google Scholar 

  11. Bruns J, Steinhagen J. Lesions of articular cartilage and osteoarthrosis - Biological background. Dt. Zeitschr f Sportmed 2000;2:42–7

    Google Scholar 

  12. Gaissmaier C, Fritz J, Mollenhauer JA. Outcome of clinically overt cartilage injuries without and with biological reconstruction. Dtsch Ärztebl 2003;100:2448–53

    Google Scholar 

  13. Saris DB, Dhert WJ, Verbout AJ. Joint homeostasis. The discrepancy between old and fresh defects in cartilage repair. J Bone Joint Surg Br 2003;85:1067–76

    CAS  PubMed  Google Scholar 

  14. Jerosch J. Akuter Gelenkinfekt. Orthopäde 2004;33:1309–20

    Article  CAS  Google Scholar 

  15. Tesch C. Fokussierte Sonografie in Orthopädie und Unfallchirurgie. Symptom-orientierte Sonografie zum raschen Erkenntnisgewinn. OUP 2018;1:5–9

    Google Scholar 

  16. Imhof H, Nöbauer-Huhmann I, Trattnig S. Koxarthrose - ein Update. Radiologe 2009;49:400–9

    Article  CAS  Google Scholar 

  17. Sutter R, Zanetti M, Pfirrmann CW. New developments in hip imaging. Radiology 2012;264:651–67

    Article  Google Scholar 

  18. Burr DB. The importance of subchondral bone in the progression of osteoarthritis. J Rheumatol 2004;31:77–8

    Google Scholar 

  19. Zacher J, Gursche A. Diagnostik der Arthrose. Orthopäde 2001;30:841–7

    Article  CAS  Google Scholar 

  20. Altman R, Alarcón G, Appelrouth D, Bloch D, Borenstein D, Brandt K, Brown C, Cooke TD, Daniel W, Feldman D et al. The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hip. Arthritis Rheum 1991;34:505–14

    Article  CAS  Google Scholar 

  21. Matikka H, Virén T. Radiation dose reduction in cone-beam computed tomography of extremities: evaluation of a novel radiation shield. J Radiol Prot 2014;34(2):N57–63

    Article  CAS  Google Scholar 

  22. Turunen MJ, Töyräs J, Kokkonen HT, Jurvelin JS. Extremity cone-beam CT for evaluation of medial tibiofemoral osteoarthritis: Initial experience in imaging of the weight-bearing and non-weight-bearing knee. Eur J Radiol 2015;84(12):2564–70

    Article  Google Scholar 

  23. Turunen MJ, Töyräs J, Kokkonen HT, Jurvelin JS. Quantitative evaluation of knee subchondral bone mineral density using cone beam computed tomography. IEEE Trans Med Imaging 2015;34(10):2186–90

    Article  Google Scholar 

  24. Jaroma A, Suomalainen JS, Niemitukia L, Soininvaara T, Salo J, Kröger H. Imaging of symptomatic total knee arthroplasty with cone beam computed tomography. Acta Radiol 2018;1:284185118762247

    Google Scholar 

  25. Huda W, Nickoloff EL, Boone JM. Overview of patient dosimetry in diagnostic radiology in the USA for the past 50 years. Med Phys 2008;35:5713–28

    Article  Google Scholar 

  26. Schütz UH. Komplikationen bei der bildgebenden Diagnostik. In: Wirth CJ, Mutschler W, Bischoff HP, Püschmann H, Neu J (Hrsg) Komplikationen in Orthopädie und Traumatologie. Vermeiden, erkennen, behandeln. Stuttgart: Georg Thieme Verlag, 2010: 72–81

    Google Scholar 

  27. Wrixon AD. New ICRP recommendations. J Radiol Prot 2008;28:161–8

    Article  CAS  Google Scholar 

  28. Weber MA, Merle C, Rehnitz C, Gotterbarm T. Modern Radiological Imaging of Osteoarthritis of The Hip Joint With Consideration of Predisposing Conditions. Rofo 2016;188(7):635–51

    Article  Google Scholar 

  29. Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br 1961;43-B:752–7

    Article  CAS  Google Scholar 

  30. Outerbridge RE. Further studies on the etiology of chondromalapacia patellae. J Bone Joint Surg Br 1964;46:179–90

    Article  CAS  Google Scholar 

  31. Cameron ML, Briggs KK, Steadman JR. Reproducibility and reliability of the Outerbridge classification for grading chondral lesions of the knee arthroscopically. Am J Sports Med 2003;31(1):83–6

    Article  Google Scholar 

  32. Brian J Cole, M Mike Malek [editors]. Articular cartilage lesions. New York: Springer, c2004. ISBN:0387955402

    Google Scholar 

  33. Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB. Magnetic resonance imaging of articular cartilage in the knee: an evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am 1998;80(9):1276–84

    Article  CAS  Google Scholar 

  34. Jungius KP, Schmid MR, Zanetti M, Hodler J, Koch P, Pfirrmann CW. Cartilaginous defects of the femorotibial joint: accuracy of coronal short inversion time inversion-recovery MR sequence. Radiology 2006;240(2):482–8

    Article  Google Scholar 

  35. Mosher TJ. MRI of osteochondral injuries of the knee and ankle in the athlete. Review.Clin Sports Med 2006;25(4):843–66

    Article  Google Scholar 

  36. Suh JS, Lee SH, Jeong EK, Kim DJ. Magnetic resonance imaging of articular cartilage. Eur Radiol 2001;11:2015–25

    Article  CAS  Google Scholar 

  37. von Engelhardt LV, Lahner M, Klussmann A. Arthroscopy vs. MRI for a detailed assessment of cartilage disease in osteoarthritis: diagnostic value of MRI in clinical practice. BMC Musculoskelet Disord 2010;11:75

    PubMed  Google Scholar 

  38. von Engelhardt LV, Raddatz M, Haage P, Bouillon B, David A, Lichtinger TK. Is MRI reliable for diagnostics chondral and osteochondral lesions in patients with acute lateral patella dislocation?. BMC Musculoskeletal Disord 2010;11:149

    Article  Google Scholar 

  39. Bachmann GF, Basad E, Rauber K, Damian MS, Rau WS. Degenerative joint disease on MRI and physical activity: a clinical study of the knee joint in 320 patients. Eur Radiol. 1999;9:145–52

    Article  CAS  Google Scholar 

  40. Kawahara Y, Uetani M, Nakahara N. Fast spin-echo MR of the articular cartilage in the osteoarthrotic knee. Correlation of MR and arthroscopic findings. Acta Radiol 1998;39:120–5

    CAS  PubMed  Google Scholar 

  41. McNicholas MJ, Brooksbank AJ, Walker CM. Observer agreement analysis of MRI grading of knee osteoarthritis. R Coll Surg Edinb 1999;44:31–3

    CAS  Google Scholar 

  42. Krampla W, Roesel M, Svoboda K, Nachbagauer A, Gschwantler M, Hruby W. MRI of the knee: how do field strength and radiologist’s experience influence diagnostic accuracy and interobserver correlation in assessing chondral and meniscal lesions and the integrity of the anterior cruciate ligament?. Eur Radiol 2009;19:1519–28

    Article  CAS  Google Scholar 

  43. Blackburn WD Jr, Bernreuter WK, Rominger M Loose LL. Arthroscopic evaluation of knee articular cartilage: a comparison with plain radiographs and magnetic resonance imaging. J Rheumatol 1994;21:675–79

    PubMed  Google Scholar 

  44. Broderick LS, Turner DA, Renfrew DL, Schnitzer TJ, Huff JP, Harris C. Severity of articular cartilage abnormality in patients with osteoarthritis: evaluation with fast spin-echo MR vs arthroscopy. Am J Roentgenol 1994;162:99–103

    Article  CAS  Google Scholar 

  45. Drapé JL, Pessis E, Auleley GR, Chevrot A, Dougados M, Ayral X. Quantitative MR imaging evaluation of chondropathy in osteoarthritic knees. Radiology 1998;208:49–55

    Article  Google Scholar 

  46. Bachmann G, Heinrichs C, Jürgensen I, Rominger M, Scheiter A, Rau WS. Comparison of different MRT techniques in the diagnosis of degenerative cartilage diseases. In vitro study of 50 joint specimens of the knee at T1.5. Rofo 1997;166:429–36

    CAS  PubMed  Google Scholar 

  47. Friemert B, Oberlander Y, Schwarz W. Diagnosis of chondral lesions of the knee joint: can MRI replace arthroscopy? A prospective study. Knee Surg Sports Traumatol Arthrosc 2004;12:58–64

    Article  CAS  Google Scholar 

  48. Link TM. MR imaging in osteoarthritis: hardware, coils, and sequences. Radiol Clin North Am 2009;47:617–32

    Article  Google Scholar 

  49. Quatman CE, Hettrich CM, Schmitt LC, Spindler KP. The Clinical Utility and Diagnostic Performance of MRI for Identification of Early and Advanced Knee Osteoarthritis: A Systematic Review. Am J Sports Med 2011;39(7):1557–68

    Article  Google Scholar 

  50. Schaefer FK, Kurz B, Schaefer PJ. Accuracy and precision in the detection of articular cartilage lesions using magnetic resonance imaging at 1.5 Tesla in an in vitro study with orthopedic and histopathologic correlation. Acta Radiol 2007;48:1131–7

    Article  CAS  Google Scholar 

  51. Schmid MR, Pfirrmann CW, Koch P, Zanetti M, Kuehn B, Hodler J. Imaging of patellar cartilage with a 2D multiple-echo data image combination sequence. Am J Roentgenol 2005;184:1744–8

    Article  Google Scholar 

  52. Schmitt F, Grosu D, Mohr C, Purdy D, Salem K, Scott KT, Stoeckel B. 3 Tesla MRI: successful results with higher field strengths. Radiologe 2004;44:31–48

    Article  CAS  Google Scholar 

  53. Kijowski R, Blankenbaker DG, Davis KW, Shinki K, Kaplan LD, De Smet AA. Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology 2009;250:839–48

    Article  Google Scholar 

  54. Kijowski R, Blankenbaker DG, Woods MA, Shinki K, De Smet AA, Reeder SB. 3.0-T evaluation of knee cartilage by using three-dimensional IDEAL GRASS imaging: comparison with fast spin-echo imaging. Radiology. 2010;255:117–27

    Article  Google Scholar 

  55. Kijowski R, Davis KW, Woods MA, Lindstrom MJ, De Smet AA, Gold GE, Busse RF. Knee joint: Comprehensive assessment with 3D isotropic resolution fast spin-echo MR imaging - Diagnostic performance compared with that of conventional MR imaging at 3.0 T. Radiology 2009;252:486–95

    Article  Google Scholar 

  56. von Engelhardt LV, Kraft CN, Pennekamp PH, Schild HH, Schmitz A, von Falkenhausen M. The evaluation of articular cartilage lesions of the knee with a 3-Tesla magnet. Arthroscopy. 2007;23(5):496–502

    Article  Google Scholar 

  57. Wong S, Steinbach L, Zhao J, Stehling C, Ma CB, Link TM. Comparative study of imaging at 3.0 T versus 1.5 T of the knee. Skeletal Radiol 2009;38:761–9

    Article  Google Scholar 

  58. von Engelhardt LV, Schmitz A, Burian B. 3-Tesla MRI vs. arthroscopy for diagnostics of degenerative knee cartilage diseases: preliminary clinical results. Orthopäde 2008;37:916–22

    Google Scholar 

  59. Boegård T, Rudling O, Petersson IF, Jonsson K. Correlation between radiographically diagnosed osteophytes and magnetic resonance detected cartilage defects in the tibiofemoral joint. Ann Rheum Dis 1998;57:401–7

    Article  Google Scholar 

  60. Kornaat PR, Bloem JL, Ceulemans RY. Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology 2006;239:811–7

    Article  Google Scholar 

  61. Link TM, Steinbach LS, Ghosh S. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology 2003;226:373–81

    Article  Google Scholar 

  62. Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis 2008;67:206–11

    Article  CAS  Google Scholar 

  63. Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D, Kothari M, Lu Y, Fye K, Zhao S, Genant HK. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis.Cartilage 2004;12:177–90

    Article  CAS  Google Scholar 

  64. Field RE, Rajakulendran K. The labro-acetabular complex. J Bone Joint Surg Am 2011;93 Suppl 2:22–7

    Article  Google Scholar 

  65. Petchprapa CN, Recht MP. Imaging of chondral lesions including femoroacetabular impingement. Semin Musculoskelet Radiol 2013;17:258–71

    Article  Google Scholar 

  66. Imhof H, Czerny, Gahleitner A, Grampp S, Kainberger F, Krestan C, Sulzbacher I. Radiologe 2002;42:416–31

    Article  CAS  Google Scholar 

  67. Ito K, Minka MA 2nd, Leunig M, Werlen S, Ganz R. Femoroacetabular impingement and the cam-effect. A MRI-based quantitative anatomical study of the femoral head-neck offset. J Bone Joint Surg Br 2001;83(2):171–6

    CAS  PubMed  Google Scholar 

  68. Weber MA, Rehnitz C, Ott H, Streich N. Leistenschmerz beim Sportler. Groin Pain in Athletes. Rofo. 2013;185(12):1139–48

    PubMed  Google Scholar 

  69. Link TM, Steinbach LS, Ghosh S, Ries M, Lu Y, Lane N, Majumdar S. Osteoarthritis. MR imaging findings in different stages of disease and correlation with clinical findings. Radiology 2003;226(2):373–81

    PubMed  Google Scholar 

  70. Kornaat PR, Bloem JL, Ceulemans RY, Riyazi N, Rosendaal FR, Nelissen RG, Carter WO, Hellio Le Graverand MP, Kloppenburg M. Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology 2006;239(3):811–7

    Article  Google Scholar 

  71. Spahn G, Schiltenwolf M, Hartmann B Grifka J, Hofmann GO, Klemm HT. The time-related risk for knee osteoarthritis after ACL injury. Results from a systematic review. Orthopaede 2016;45:81–90

    CAS  Google Scholar 

  72. Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 2003;85-A Suppl 2:58–69

    Article  Google Scholar 

  73. Schütz UH, Schmidt-Trucksäss A, Knechtle B, Machann J, Wiedelbach H, Ehrhardt M, Freund W, Gröninger S, Brunner H, Schulze I, Brambs HJ, Billich C. The Transeurope Footrace Project: Longitudinal data acquisition in a cluster randomized mobile MRI observational cohort study on 44 endurance runners at a 64-stage 4,486km transcontinental ultramarathon. BMC Med 2012;10:78

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Schütz.

Additional information

Interessenkonflikt

Der Autor erklärt, dass er sich bei der Erstellung des Beitrags von keinen wirtschaftlichen Interessen leiten ließ, und dass keine potenziellen Interessenkonflikte vorliegen. Der Verlag erklärt, dass die inhaltliche Qualität des Beitrags von zwei unabhängigen Gutachtern geprüft wurde. Werbung in dieser Zeitschriftenausgabe hat keinen Bezug zur CME-Fortbildung. CME-Fortbildung und -Fragen frei sind von werblichen Aussagen und Produktempfehlungen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schütz, U. Differenzierte Bilddiagnostik statt Minimalismus. Orthop. Rheuma 22, 42–53 (2019). https://doi.org/10.1007/s15002-019-1472-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15002-019-1472-3

Navigation