Skip to main content
Log in

Therapeutic Effect of Schwann Cell-Like Cells Differentiated from Human Tonsil-Derived Mesenchymal Stem Cells on Diabetic Neuropathy in db/db Mice

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Diabetic neuropathy (DN) is the most common complication of diabetes, and approximately 50% of patients with this disease suffer from peripheral neuropathy. Nerve fiber loss in DN occurs due to myelin defects and is characterized by symptoms of impaired nerve function. Schwann cells (SCs) are the main support cells of the peripheral nervous system and play important roles in several pathways contributing to the pathogenesis and development of DN. We previously reported that human tonsil-derived mesenchymal stem cells differentiated into SCs (TMSC-SCs), named neuronal regeneration-promoting cells (NRPCs), which cells promoted nerve regeneration in animal models with peripheral nerve injury or hereditary peripheral neuropathy.

Methods:

In this study, NRPCs were injected into the thigh muscles of BKS-db/db mice, a commonly used type 2 diabetes model, and monitored for 26 weeks. Von Frey test, sensory nerve conduction study, and staining of sural nerve, hind foot pad, dorsal root ganglia (DRG) were performed after NRPCs treatment.

Results:

Von Frey test results showed that the NRPC treatment group (NRPC group) showed faster responses to less force than the vehicle group. Additionally, remyelination of sural nerve fibers also increased in the NRPC group. After NRPCs treatment, an improvement in response to external stimuli and pain sensation was expected through increased expression of PGP9.5 in the sole and TRPV1 in the DRG.

Conclusion:

The NRPCs treatment may alleviate DN through the remyelination and the recovery of sensory neurons, could provide a better life for patients suffering from complications of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Williams R, Karuranga S, Malanda B, Saeedi P, Basit A, Besançon S, et al. Global and regional estimates and projections of diabetes-related health expenditure: results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Research and Clinical Practice. 2020;162:108072.

  2. Sempere-Bigorra M, Julián-Rochina I, Cauli O. Differences and similarities in neuropathy in type 1 and 2 diabetes: a systematic review. J Pers Med. 2021;11:230.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Allen MD, Choi IH, Kimpinski K, Doherty TJ, Rice CL. Motor unit loss and weakness in association with diabetic neuropathy in humans. Muscle Nerve. 2013;48:298–300.

    Article  PubMed  Google Scholar 

  4. Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5:41.

    Article  PubMed  Google Scholar 

  5. Zakin E, Abrams R, Simpson DM. Diabetic neuropathy. Semin Neurol. 2019;39:560–9.

    Article  PubMed  Google Scholar 

  6. Aziz N, Dash B, Wal P, Kumari P, Joshi P, Wal A. New horizons in diabetic neuropathies: an updated review on their pathology, diagnosis, mechanism, screening techniques, pharmacological, and future approaches. Curr Diabetes Rev. 2024;20:e201023222416.

    Article  Google Scholar 

  7. Tesfaye S, Kempler P. Painful diabetic neuropathy. Diabetologia. 2005;48:805–7.

    Article  CAS  PubMed  Google Scholar 

  8. Eaton SE, Harris ND, Ibrahim S, Patel KA, Selmi F, Radatz M, et al. Increased sural nerve epineurial blood flow in human subjects with painful diabetic neuropathy. Diabetologia. 2003;46:934–9.

    Article  CAS  PubMed  Google Scholar 

  9. Gandhi RA, Marques JL, Selvarajah D, Emery CJ, Tesfaye S. Painful diabetic neuropathy is associated with greater autonomic dysfunction than painless diabetic neuropathy. Diabetes Care. 2010;33:1585–90.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Oyibo SO, Prasad YD, Jackson NJ, Jude EB, Boulton AJ. The relationship between blood glucose excursions and painful diabetic peripheral neuropathy: a pilot study. Diabet Med. 2002;19:870–3.

    Article  CAS  PubMed  Google Scholar 

  11. Selvarajah D, Wilkinson ID, Gandhi R, Griffiths PD, Tesfaye S. Microvascular perfusion abnormalities of the thalamus in painful but not painless diabetic polyneuropathy: a clue to the pathogenesis of pain in type 1 diabetes. Diabetes Care. 2011;34:718–20.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sorensen L, Molyneaux L, Yue DK. The relationship among pain, sensory loss, and small nerve fibers in diabetes. Diabetes Care. 2006;29:883–7.

    Article  PubMed  Google Scholar 

  13. Schreiber AK, Nones CF, Reis RC, Chichorro JG, Cunha JM. Diabetic neuropathic pain: physiopathology and treatment. World J Diabetes. 2015;6:432–44.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yorek M. Treatment for diabetic peripheral neuropathy: What have we learned from animal models? Curr Diabetes Rev. 2022;18:e040521193121.

    Article  CAS  PubMed  Google Scholar 

  15. Kobayashi M, Zochodne DW. Diabetic neuropathy and the sensory neuron: new aspects of pathogenesis and their treatment implications. J Diabetes Investig. 2018;9:1239–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Akkus G, Sert M. Diabetic foot ulcers: a devastating complication of diabetes mellitus continues non-stop in spite of new medical treatment modalities. World J Diabetes. 2022;13:1106–21.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Elafros MA, Kvalsund MP, Callaghan BC. The global burden of polyneuropathy-in need of an accurate assessment. JAMA Neurol. 2022;79:537–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Boulton AJM, Kempler P, Ametov A, Ziegler D. Whither pathogenetic treatments for diabetic polyneuropathy? Diabetes Metab Res Rev. 2013;29:327–33.

    Article  CAS  PubMed  Google Scholar 

  19. Akter S, Choubey M, Mohib MM, Arbee S, Sagor MAT, Mohiuddin MS. Stem cell therapy in diabetic polyneuropathy: recent advancements and future directions. Brain Sci. 2023;13:255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Naruse K. Schwann cells as crucial players in diabetic neuropathy. In: Sango K, Yamauchi J, Ogata T, Susuki K, editors. Myelin: Basic and clinical advances. Singapore: Springer Singapore; 2019. p. 345–56.

    Chapter  Google Scholar 

  21. Okawa T, Kamiya H, Himeno T, Kato J, Seino Y, Fujiya A, et al. Treatment of neural crest-like cells derived from induced pluripotent stem cells improves diabetic polyneuropathy in mice. Cell Transplant. 2013;22:1767–83.

    Article  PubMed  Google Scholar 

  22. Majd H, Amin S, Ghazizadeh Z, Cesiulis A, Arroyo E, Lankford K, Majd A, et al. Deriving Schwann cells from hPSCs enables disease modeling and drug discovery for diabetic peripheral neuropathy. Cell Stem Cell. 2023;30:632-47.e10.

    Article  CAS  PubMed  Google Scholar 

  23. De Gregorio C, Contador D, Díaz D, Cárcamo C, Santapau D, Lobos-Gonzalez L, et al. Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice. Stem Cell Res Ther. 2020;11:168.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang Z, Liu Y, Zhou J. Neuritin promotes bone marrow-derived mesenchymal stem cell migration to treat diabetic peripheral neuropathy. Mol Neurobiol. 2022;59:6666–83.

    Article  CAS  PubMed  Google Scholar 

  25. Margiana R, Markov A, Zekiy AO, Hamza MU, Al-Dabbagh KA, Al-Zubaidi SH, et al. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res Ther. 2022;13:366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abbaszadeh H, Ghorbani F, Derakhshani M, Movassaghpour AA, Yousefi M, Talebi M, Shamsasenjan K. Regenerative potential of wharton’s jelly-derived mesenchymal stem cells: a new horizon of stem cell therapy. J Cell Physiol. 2020;235:9230–40.

    Article  CAS  PubMed  Google Scholar 

  27. Ryu KH, Cho KA, Park HS, Kim JY, Woo SY, Jo I, et al. Tonsil-derived mesenchymal stromal cells: evaluation of biologic, immunologic and genetic factors for successful banking. Cytotherapy. 2012;14:1193–202.

    Article  CAS  PubMed  Google Scholar 

  28. Lee HJ, Kim YH, Choi DW, Cho KA, Park JW, Shin SJ, et al. Tonsil-derived mesenchymal stem cells enhance allogeneic bone marrow engraftment via collagen iv degradation. Stem Cell Res Ther. 2021;12:329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Choi JS, Lee BJ, Park HY, Song JS, Shin SC, Lee JC, et al. Effects of donor age, long-term passage culture, and cryopreservation on tonsil-derived mesenchymal stem cells. Cell Physiol Biochem. 2015;36:85–99.

    Article  CAS  PubMed  Google Scholar 

  30. Oh SY, Choi YM, Kim HY, Park YS, Jung SC, Park JW, et al. Application of tonsil-derived mesenchymal stem cells in tissue regeneration: concise review. Stem Cells. 2019;37:1252–60.

  31. Jung N, Park S, Choi Y, Park JW, Hong YB, Park HH, et al. Tonsil-derived mesenchymal stem cells differentiate into a schwann cell phenotype and promote peripheral nerve regeneration. Int J Mol Sci. 2016;17:1867.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Park S, Jung N, Myung S, Choi Y, Chung KW, Choi BO, Jung SC. Differentiation of human tonsil-derived mesenchymal stem cells into schwann-like cells improves neuromuscular function in a mouse model of charcot-marie-tooth disease type 1a. Int J Mol Sci. 2018;19:2393.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bosch-Queralt M, Fledrich R, Stassart RM. Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis. 2023;176:105952.

    Article  CAS  PubMed  Google Scholar 

  34. Li J, Guan R, Pan L. Mechanism of schwann cells in diabetic peripheral neuropathy: a review. Medicine (Baltimore). 2023;102:e32653.

    Article  PubMed  Google Scholar 

  35. Nam YH, Park S, Yum Y, Jeong S, Park HE, Kim HJ, et al. Preclinical efficacy of peripheral nerve regeneration by schwann cell-like cells differentiated from human tonsil-derived mesenchymal stem cells in c22 mice. Biomedicines. 2023;11:3334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De Gregorio C, Contador D, Campero M, Ezquer M, Ezquer F. Characterization of diabetic neuropathy progression in a mouse model of type 2 diabetes mellitus. Biol Open. 2018;7:bio036830.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shi TJ, Zhang MD, Zeberg H, Nilsson J, Grünler J, Liu SX, et al. Coenzyme q10 prevents peripheral neuropathy and attenuates neuron loss in the db−/db− mouse, a type 2 diabetes model. Proc Natl Acad Sci U S A. 2013;110:690–5.

    Article  CAS  PubMed  Google Scholar 

  38. Lee SM, Bressler R. Prevention of diabetic nephropathy by diet control in the db/db mouse. Diabetes. 1981;30:106–11.

    Article  CAS  PubMed  Google Scholar 

  39. Wald C, Wu C. Of mice and women: the bias in animal models. Science. 2010;327:1571–2.

    Article  CAS  PubMed  Google Scholar 

  40. Garbay B, Heape AM, Sargueil F, Cassagne C. Myelin synthesis in the peripheral nervous system. Prog Neurobiol. 2000;61:267–304.

    Article  CAS  PubMed  Google Scholar 

  41. Lauria G, Cornblath DR, Johansson O, McArthur JC, Mellgren SI, Nolano M, et al. Efns guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy. Eur J Neurol. 2005;12:747–58.

    Article  CAS  PubMed  Google Scholar 

  42. Hu Q, Wang Q, Wang C, Tai Y, Liu B, Shao X, et al. Trpv1 channel contributes to the behavioral hypersensitivity in a rat model of complex regional pain syndrome type 1. Front Pharmacol. 2019;10:453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Szabadfi K, Pinter E, Reglodi D, Gabriel R. Chapter one - neuropeptides, trophic factors, and other substances providing morphofunctional and metabolic protection in experimental models of diabetic retinopathy. In: Jeon KW, editor. International review of cell and molecular biology. 311: Academic Press; 2014. p. 1–121.

  44. Kan M, Guo G, Singh B, Singh V, Zochodne DW. Glucagon-like peptide 1, insulin, sensory neurons, and diabetic neuropathy. J Neuropathol Exp Neurol. 2012;71:494–510.

    Article  CAS  PubMed  Google Scholar 

  45. Sullivan KA, Hayes JM, Wiggin TD, Backus C, Su OhS, Lentz SI, et al. Mouse models of diabetic neuropathy. Neurobiol Dis. 2007;28:276–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wright DE, Johnson MS, Arnett MG, Smittkamp SE, Ryals JM. Selective changes in nocifensive behavior despite normal cutaneous axon innervation in leptin receptor-null mutant (db/db) mice. J Peripher Nerv Syst. 2007;12:250–61.

    Article  PubMed  Google Scholar 

  47. Norido F, Canella R, Zanoni R, Gorio A. Development of diabetic neuropathy in the c57bl/ks (db/db) mouse and its treatment with gangliosides. Exp Neurol. 1984;83:221–32.

    Article  CAS  PubMed  Google Scholar 

  48. Sima AAF, Robertson DM. Peripheral neuropathy in mutant diabetic mouse [c57bl/ks (db/db)]. Acta Neuropathol. 1978;41:85–9.

    Article  CAS  PubMed  Google Scholar 

  49. Moore SA, Peterson RG, Felten DL, Cartwright TR, O’Connor BL. Reduced sensory and motor conduction velocity in 25-week-old diabetic [c57blks (dbdb)] mice. Exp Neurol. 1980;70:548–55.

    Article  CAS  PubMed  Google Scholar 

  50. Sumner CJ, Sheth S, Griffin JW, Cornblath DR, Polydefkis M. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology. 2003;60:108–11.

    Article  CAS  PubMed  Google Scholar 

  51. Tavee J, Zhou L. Small fiber neuropathy: a burning problem. Cleve Clin J Med. 2009;76:297–305.

    Article  PubMed  Google Scholar 

  52. Fan B, Li C, Szalad A, Wang L, Pan W, Zhang R, et al. Mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes. Diabetologia. 2020;63:431–43.

    Article  CAS  PubMed  Google Scholar 

  53. Lee DK. Basic skills in nerve conduction studies. Ann Clin Neurophysiol. 1999;1:202–9.

    Google Scholar 

  54. Ko KR, Lee J, Lee D, Nho B, Kim S. Hepatocyte growth factor (hgf) promotes peripheral nerve regeneration by activating repair schwann cells. Sci Rep. 2018;8:8316.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Maina F, Hilton MC, Ponzetto C, Davies AM, Klein R. Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons. Genes Dev. 1997;11:3341–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kessler JA, Shaibani A, Sang CN, Christiansen M, Kudrow D, Vinik A, et al. Gene therapy for diabetic peripheral neuropathy: a randomized, placebo-controlled phase III study of VM202, a plasmid DNA encoding human hepatocyte growth factor. Clin Transl Sci. 2021;14:1176–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pabbidi RM, Yu S-Q, Peng S, Khardori R, Pauza ME, Premkumar LS. Influence of trpv1 on diabetes-induced alterations in thermal pain sensitivity. Mol Pain. 2008;4:9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dauch JR, Yanik BM, Hsieh W, Oh SS, Cheng HT. Neuron-astrocyte signaling network in spinal cord dorsal horn mediates painful neuropathy of type 2 diabetes. Glia. 2012;60:1301–15.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by a Korean Fund for Regenerative Medicine (KFRM) grant, funded by the Korea government (the Ministry of Science and ICT, the Ministry of Health & Welfare) (22C0627L1-11), a Basic Science Research Program through the NRF funded by the Ministry of Education (2022R1I1A01064295) and the RP-Grant 2023 of Ewha Womans University.

Author information

Authors and Affiliations

Authors

Contributions

S-CJ conceived and designed the study; YY, SP, YHN, JY and SH performed experiments; YY, SP and S-CJ analyzed the data; HJK and JL resources; YY, SP and S-CJ wrote the paper All authors have read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to Sung-Chul Jung.

Ethics declarations

Conflict of interest

H.J.K. and J.L. are employees of Cellatoz Therapeutics, Inc.; S.-C.J. is a scientific advisory board member of Cellatoz Therapeutics, Inc.; The other authors declare no conflict of interest.

Ethical statement

The study protocol was approved by the Ewha Womans University Medical Center (EWUMC) institutional review board (IRB number: EUMC-2021-09-036). All the experimental procedures were reviewed and approved by the ethics committee for animal research at Ewha Woman’s University (EWHA MEDIACUC 22-005-3). Informed Consent Statement: Informed written consent was obtained from all the patients participating in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yum, Y., Park, S., Nam, Y.H. et al. Therapeutic Effect of Schwann Cell-Like Cells Differentiated from Human Tonsil-Derived Mesenchymal Stem Cells on Diabetic Neuropathy in db/db Mice. Tissue Eng Regen Med (2024). https://doi.org/10.1007/s13770-024-00638-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13770-024-00638-0

Keywords

Navigation