Skip to main content
Log in

Treatment of Syringomyelia Characterized by Focal Dilatation of the Central Canal Using Mesenchymal Stem Cells and Neural Stem Cells

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

BACKGROUND:

Syringomyelia is a progressive chronic disease that leads to nerve pain, sensory dissociation, and dyskinesia. Symptoms often do not improve after surgery. Stem cells have been widely explored for the treatment of nervous system diseases due to their immunoregulatory and neural replacement abilities.

METHODS:

In this study, we used a rat model of syringomyelia characterized by focal dilatation of the central canal to explore an effective transplantation scheme and evaluate the effect of mesenchymal stem cells and induced neural stem cells for the treatment of syringomyelia.

RESULTS:

The results showed that cell transplantation could not only promote syrinx shrinkage but also stimulate the proliferation of ependymal cells, and the effect of this result was related to the transplantation location. These reactions appeared only when the cells were transplanted into the cavity. Additionally, we discovered that cell transplantation transformed activated microglia into the M2 phenotype. IGF1-expressing M2 microglia may play a significant role in the repair of nerve pain.

CONCLUSION:

Cell transplantation can promote cavity shrinkage and regulate the local inflammatory environment. Moreover, the proliferation of ependymal cells may indicate the activation of endogenous stem cells, which is important for the regeneration and repair of spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Ciaramitaro P, Massimi L, Bertuccio A, Solari A, Farinotti M, Peretta P, et al. Diagnosis and treatment of Chiari malformation and syringomyelia in adults: international consensus document. Neurol Sci. 2022;43:1327–42.

    Article  PubMed  Google Scholar 

  2. Giner J, Pérez López C, Hernández B, Gómez de la Riva Á, Isla A, Roda JM. Update on the pathophysiology and management of syringomyelia unrelated to Chiari malformation. Neurología (Engl Ed). 2019;34:318–25.

    Article  CAS  Google Scholar 

  3. Tsitouras V, Sgouros S. Syringomyelia and tethered cord in children. Childs Nerv Syst. 2013;29:1625–34.

    Article  PubMed  Google Scholar 

  4. Vandertop WP. Syringomyelia. Neuropediatrics. 2014;45:3–9.

    PubMed  Google Scholar 

  5. Xu N, Xu T, Mirasol R, Holmberg L, Vincent PH, Li X, et al. Transplantation of human neural precursor cells reverses syrinx growth in a rat model of post-traumatic syringomyelia. Neurotherapeutics. 2021;18:1257–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tingting Xu, Li X, Guo Y, Uhlin E, Holmberg L, Mitra S, et al. Multiple therapeutic effects of human neural stem cells derived from induced pluripotent stem cells in a rat model of post-traumatic syringomyelia. EBioMedicine. 2022;77:103882.

    Article  Google Scholar 

  7. Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, et al. Mesenchymal stem cells for spinal cord injury: current options, limitations, and future of cell therapy. Int J Mol Sci. 2019;20:2698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pereira IM, Marote A, Salgado AJ, Silva NA. Filling the gap: neural stem cells as a promising therapy for spinal cord injury. Pharmaceuticals (Basel). 2019;12:65.

    Article  CAS  PubMed  Google Scholar 

  9. Damianakis EI, Benetos IS, Evangelopoulos DS, Kotroni A, Vlamis J, Pneumaticos SG. Stem cell therapy for spinal cord injury: a review of recent clinical trials. Cureus. 2022;14: e24575.

    PubMed  PubMed Central  Google Scholar 

  10. Vaquero J, Zurita M, Rico MA, Aguayo C, Fernandez C, Rodriguez-Boto G, et al. Cell therapy with autologous mesenchymal stromal cells in post-traumatic syringomyelia. Cytotherapy. 2018;20:796–805.

    Article  PubMed  Google Scholar 

  11. Xie JL, Wang XR, Li MM, Tao ZH, Teng WW, Saijilafu. Mesenchymal stromal cell therapy in spinal cord injury: mechanisms and prospects. Front Cell Neurosci. 2022;16:862673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kadoya K, Lu P, Nguyen K, Lee-Kubli C, Kumamaru H, Yao L, et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat Med. 2016;22:479–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rosenzweig ES, Brock JH, Lu P, Kumamaru H, Salegio EA, Kadoya K, et al. Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat Med. 2018;24:484–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ahn H, Lee SY, Jung WJ, Lee KH. Treatment of syringomyelia using uncultured umbilical cord mesenchymal stem cells: a case report and review of literature. World J Stem Cells. 2022;14:303–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhao Z, Wei Xu, Xie J, Wang Y, Li T, Zhang Y, et al. Bone marrow-derived mesenchymal stem cells (BM-MSCs) inhibit apoptosis of spinal cord cells in a kaolin-induced syringomyelia-associated scoliosis rabbit model. Int J Clin Exp Pathol. 2018;11:1890–9.

    PubMed  PubMed Central  Google Scholar 

  16. Ma L, Yao Q, Zhang C, Li M, Cheng L, Jian F. Chronic extradural compression of spinal cord leads to syringomyelia in rat model. Fluids Barriers CNS. 2020;17:50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yuan Y, Tang X, Bai YF, Wang S, An J, Wu Y, et al. Dopaminergic precursors differentiated from human blood-derived induced neural stem cells improve symptoms of a mouse Parkinson’s disease model. Theranostics. 2018;8:4679–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li M, Wang Z, Zheng T, Huang T, Liu B, Han D, et al. characterization of human-induced neural stem cells and derivatives following transplantation into the central nervous system of a nonhuman primate and rats. Stem Cells Int. 2022;2022:1396735.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Meletis K, Barnabe-Heider F, Carlen M, Evergren E, Tomilin N, Shupliakov O, et al. Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol. 2008;6: e182.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Carvalho-Paulo D, Bento Torres Neto J, Filho CS, de Oliveira TCG, de Sousa AA, Dos Reis RR, et al. Microglial morphology across distantly related species: phylogenetic, environmental and age influences on microglia reactivity and surveillance states. Front Immunol. 2021;12:683026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boche D, Perry VH, Nicoll JA. Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol. 2013;39:3–18.

    Article  CAS  PubMed  Google Scholar 

  22. Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol. 2016;53:1181–94.

    Article  CAS  PubMed  Google Scholar 

  23. Kobashi S, Terashima T, Katagi M, Nakae Y, Okano J, Suzuki Y, et al. Transplantation of M2-deviated microglia promotes recovery of motor function after spinal cord injury in mice. Mol Ther. 2020;28:254–65.

    Article  CAS  PubMed  Google Scholar 

  24. Bellver-Landete V, Bretheau F, Mailhot B, Vallieres N, Lessard M, Janelle ME, et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat Commun. 2019;10:518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brennan FH, Li Y, Wang C, Ma A, Guo Q, Li Y, et al. Microglia coordinate cellular interactions during spinal cord repair in mice. Nat Commun. 2022;13:4096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kohno K, Shirasaka R, Yoshihara K, Mikuriya S, Tanaka K, Takanami K, et al. A spinal microglia population involved in remitting and relapsing neuropathic pain. Science. 2022;376:86–90.

    Article  CAS  PubMed  Google Scholar 

  27. Shenoy VS, Sampath R. Syringomyelia. Treasure Island: StatPearls; 2023.

    Google Scholar 

  28. Kordelas L, Rebmann V, Ludwig AK, Radtke S, Ruesing J, Doeppner TR, et al. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia. 2014;28:970–3.

    Article  CAS  PubMed  Google Scholar 

  29. Liau LL, Looi QH, Chia WC, Subramaniam T, Ng MH, Law JX. Treatment of spinal cord injury with mesenchymal stem cells. Cell Biosci. 2020;10:112.

    Article  PubMed  PubMed Central  Google Scholar 

  30. de Freria CM, Van Niekerk E, Blesch A, Lu P. Neural stem cells: promoting axonal regeneration and spinal cord connectivity. Cells. 2021;10:3296.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yousefifard M, Rahimi-Movaghar V, Nasirinezhad F, Baikpour M, Safari S, Saadat S, et al. Neural stem/progenitor cell transplantation for spinal cord injury treatment; a systematic review and meta-analysis. Neuroscience. 2016;322:377–97.

    Article  CAS  PubMed  Google Scholar 

  32. Matyas JJ, Stewart AN, Goldsmith A, Nan Z, Skeel RL, Rossignol J, et al. Effects of bone-marrow-derived MSC transplantation on functional recovery in a rat model of spinal cord injury: comparisons of transplant locations and cell concentrations. Cell Transplant. 2017;26:1472–82.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nelles DG, Hazrati LN. Ependymal cells and neurodegenerative disease: outcomes of compromised ependymal barrier function. Brain Commun. 2022;4:fcac288.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Saunders NR, Liddelow SA, Dziegielewska KM. Barrier mechanisms in the developing brain. Front Pharmacol. 2012;3:46.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gilbert EAB, Lakshman N, Lau KSK, Morshead CM. Regulating endogenous neural stem cell activation to promote spinal cord injury repair. Cells. 2022;11:846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang F, Gao T, Wang W, Wang L, Xie Y, Tai C, et al. Engineered basic fibroblast growth factor-overexpressing human umbilical cord-derived mesenchymal stem cells improve the proliferation and neuronal differentiation of endogenous neural stem cells and functional recovery of spinal cord injury by activating the PI3K-Akt-GSK-3beta signaling pathway. Stem Cell Res Ther. 2021;12:468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barnabe-Heider F, Goritz C, Sabelstrom H, Takebayashi H, Pfrieger FW, Meletis K, et al. Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell. 2010;7:470–82.

    Article  CAS  PubMed  Google Scholar 

  38. Sabelström H, Stenudd M, Réu P, Dias DO, Elfineh M, Zdunek S, Damberg P, Göritz C, Frisén J. Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice. Science. 2013;342:637–40.

    Article  PubMed  Google Scholar 

  39. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci. 2004;24:2143–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gregoire CA, Goldenstein BL, Floriddia EM, Barnabe-Heider F, Fernandes KJ. Endogenous neural stem cell responses to stroke and spinal cord injury. Glia. 2015;63:1469–82.

    Article  PubMed  Google Scholar 

  41. Stenudd M, Sabelstrom H, Frisen J. Role of endogenous neural stem cells in spinal cord injury and repair. JAMA Neurol. 2015;72:235–7.

    Article  PubMed  Google Scholar 

  42. Brousse B, Mercier O, Magalon K, Daian F, Durbec P, Cayre M. Endogenous neural stem cells modulate microglia and protect against demyelination. Stem Cell Rep. 2021;16:1792–804.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Beijing Municipal Natural Science Foundation [No. 583003]; Beijing Municipal Science and Technology Commission [Grant number: Z191199996619048 and L212007]; the National Natural Science Foundation of China [82171250 and 81973351]; Beijing Talents Foundation [2017000021223TD03]; Support Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th Five–year Plan [CIT and TCD20180333]; Beijing Municipal Health Commission Fund [PXM2020_026283_000005]; Beijing One Hundred, Thousand, and Ten Thousand Talents Fund [2018A03]; and the Royal Society-Newton Advanced Fellowship [NA150482].

Author information

Authors and Affiliations

Authors

Contributions

The authors would like to thank XW and BQ for their contribution to the model-building and cell transplantation experiments. We also thank SC for the tissue sectioning and staining, TZ for preparing cells, and YG, LM, SL, QL, ZC, and FJ for their contribution to the design.

Corresponding authors

Correspondence to Zhiguo Chen or Fengzeng Jian.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical statement

The animal studies were performed after receiving approval from the Institutional Animal Care and Use Committee (IACUC) of Xuanwu Hospital Capital Medical University (IACUC approval No. XW-20210723-1).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1470 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wang, X., Qi, B. et al. Treatment of Syringomyelia Characterized by Focal Dilatation of the Central Canal Using Mesenchymal Stem Cells and Neural Stem Cells. Tissue Eng Regen Med (2024). https://doi.org/10.1007/s13770-024-00637-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13770-024-00637-1

Keywords

Navigation