Skip to main content
Log in

Cross-Linking Methods of the Silk Protein Hydrogel in Oral and Craniomaxillofacial Tissue Regeneration

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

BACKGROUND:

Craniomaxillofacial tissue defects are clinical defects involving craniomaxillofacial and oral soft and hard tissues. They are characterized by defect-shaped irregularities, bacterial and inflammatory environments, and the need for functional recovery. Conventional clinical treatments are currently unable to achieve regeneration of high-quality oral craniomaxillofacial tissue. As a natural biomaterial, silk fibroin (SF) has been widely studied in biomedicine and has broad prospects for use in tissue regeneration. Hydrogels made of SF showed excellent water retention, biocompatibility, safety and the ability to combine with other materials.

METHODS:

To gain an in-depth understanding of the current development of SF, this article reviews the structure, preparation and application prospects in oral and craniomaxillofacial tissue regenerative medicine. It first briefly introduces the structure of SF and then summarizes the principles, advantages and disadvantages of the different cross-linking methods (physical cross-linking, chemical cross-linking and double network structure) of SF. Finally, the existing research on the use of SF in tissue engineering and the prospects of using SF with different cross-linking methods in oral and craniomaxillofacial tissue regeneration are also discussed.

CONCLUSIONS:

This review is intended to show the advantages of SF hydrogels in tissue engineering and provides theoretical support for establishing novel and viable silk protein hydrogels for regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Liu M, Liu X, Su Y, Li S, Chen Y, Liu A, et al. Emerging role of mesenchymal stem cell-derived extracellular vesicles in oral and craniomaxillofacial tissue regenerative medicine. Front Bioeng Biotechnol. 2022;10:1054370.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Galli M, Yao Y, Giannobile WV, Wang HL. Current and future trends in periodontal tissue engineering and bone regeneration. Plastic Aesthetic Res. 2021;8

  3. Zhang S, Yang Y, Jia S, Chen H, Duan Y, Li X, et al. Exosome-like vesicles derived from Hertwig’s epithelial root sheath cells promote the regeneration of dentin-pulp tissue. Theranostics. 2020;10:5914–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hashemi-Beni B, Khoroushi M, Foroughi MR, Karbasi S, Khademi AA. Tissue engineering: Dentin—pulp complex regeneration approaches (a review). Tissue Cell. 2017;49:552–64.

    Article  CAS  PubMed  Google Scholar 

  5. Yu Y, Yu T, Wang X, Liu D. Functional hydrogels and their applications in craniomaxillofacial bone regeneration. Pharmaceutics. 2022;15.

  6. Schmidt AH. Autologous bone graft: Is it still the gold standard? Injury. 2021;52(Suppl 2):S18-s22.

    Article  PubMed  Google Scholar 

  7. Li Y, Zhang J, Wang C, Jiang Z, Lai K, Wang Y, et al. Porous composite hydrogels with improved MSC survival for robust epithelial sealing around implants and M2 macrophage polarization. Acta Biomater. 2023;157:108–23.

    Article  CAS  PubMed  Google Scholar 

  8. Mao Y, Zhang Y, Wang Y, Zhou T, Ma B, Zhou P. A multifunctional nanocomposite hydrogel with controllable release behavior enhances bone regeneration. Regenerat Biomater. 2023;10:rbad046.

    Article  CAS  Google Scholar 

  9. Atila D, Keskin D, Lee YL, Lin FH, Hasirci V, Tezcaner A. Injectable methacrylated gelatin/thiolated pectin hydrogels carrying melatonin/tideglusib-loaded core/shell PMMA/silk fibroin electrospun fibers for vital pulp regeneration. Colloids Surf B. 2023;222: 113078.

    Article  CAS  Google Scholar 

  10. Wu S, Zhou X, Ai Y. Pro-angiogenic photo-crosslinked silk fibroin hydrogel: a potential candidate for repairing alveolar bone defects. J Appl Oral Sci Revista FOB. 2023;31: e20230158.

    Article  CAS  PubMed  Google Scholar 

  11. Huang M, Huang Y, Liu H, Tang Z, Chen Y, Huang Z, et al. Hydrogels for the treatment of oral and maxillofacial diseases: current research, challenges, and future directions. Biomater Sci. 2022.

  12. Ealla KKR, Veeraraghavan VP, Ravula NR, Durga CS, Ramani P, Sahu V, et al. Silk hydrogel for tissue engineering: a review. J Contemp Dent Pract. 2022;23:467–77.

    Article  PubMed  Google Scholar 

  13. Jhon MS, Andrade JD. Water and hydrogels. J Biomed Mater Res. 1973;7:509–22.

    Article  CAS  PubMed  Google Scholar 

  14. Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE. Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release. 2014;190:254–73.

    Article  CAS  PubMed  Google Scholar 

  15. Alipour M, Ghorbani M, Johari Khatoonabad M, Aghazadeh M. A novel injectable hydrogel containing polyetheretherketone for bone regeneration in the craniofacial region. Sci Rep. 2023;13:864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun W, Gregory DA, Tomeh MA, Zhao X. Silk fibroin as a functional biomaterial for tissue engineering. IJMS. 2021;22.

  17. Nih LR, Gojgini S, Carmichael ST, Segura T. Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke. Nat Mater. 2018;17:642–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fan L, Liu C, Chen X, Zou Y, Zhou Z, Lin C, et al. Directing induced pluripotent stem cell derived neural stem cell fate with a three-dimensional biomimetic hydrogel for spinal cord injury repair. ACS Appl Mater Interfaces. 2018;10:17742–55.

    Article  CAS  PubMed  Google Scholar 

  19. Xie X, Li Z, Yang X, Yang B, Zong Z, Wang X, et al. Biomimetic nanofibrillar hydrogel with cell-adaptable network for enhancing cellular mechanotransduction, metabolic energetics, and bone regeneration. J Am Chem Soc. 2023;145:15218–29.

    Article  CAS  PubMed  Google Scholar 

  20. Noohi P, Abdekhodaie MJ, Saadatmand M, Nekoofar MH, Dummer PMH. The development of a dental light curable PRFe-loaded hydrogel as a potential scaffold for pulp-dentine complex regeneration: an in vitro study. Int Endod J. 2023;56:447–64.

    Article  PubMed  Google Scholar 

  21. Kawamoto M, Jouraku A, Toyoda A, Yokoi K, Minakuchi Y, Katsuma S, et al. High-quality genome assembly of the silkworm, Bombyx mori. Insect Biochem Mol Biol. 2019;107:53–62.

    Article  CAS  PubMed  Google Scholar 

  22. Yang M. Silk-based biomaterials. Microsc Res Tech. 2017;80:321–30.

    Article  PubMed  Google Scholar 

  23. Zheng H, Zuo B. Functional silk fibroin hydrogels: preparation, properties and applications. J Mater Chem B. 2021;9:1238–58.

    Article  CAS  PubMed  Google Scholar 

  24. Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem. 2000;275:40517–28.

    Article  CAS  PubMed  Google Scholar 

  25. Lotz B, Colonna CF. The chemical structure and the crystalline structures of Bombyx mori silk fibroin. Biochimie. 1979;61:205–14.

    Article  CAS  PubMed  Google Scholar 

  26. Mitraki A, Van Raaij MJ. Folding of beta-structured fibrous proteins and self-assembling peptides. Methods Mol Biol (Clifton, NJ). 2005;300:125–40.

    CAS  Google Scholar 

  27. Marsh RE, Corey RB, Pauling L. An investigation of the structure of silk fibroin. Biochem Biophys Acta. 1955;16:1–34.

    Article  CAS  PubMed  Google Scholar 

  28. Qi Y, Wang H, Wei K, Yang Y, Zheng RY, Kim IS, et al. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int J Mol Sci. 2017;18.

  29. Ribeiro M, Moraes MAD, Beppu MM, Monteiro FJ. The role of dialysis and freezing on structural conformation, thermal properties and morphology of silk fibroin hydrogels. Biomatter. 2014;4:e28536-e.

    Article  Google Scholar 

  30. Zhao Y, Zhu ZS, Guan J, Wu SJ. Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels. Acta Biomater. 2021;125:57–71.

    Article  CAS  PubMed  Google Scholar 

  31. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011;6:1612–31.

    Article  CAS  PubMed  Google Scholar 

  32. Farokhi M, Aleemardani M, Solouk A, Mirzadeh H, Teuschl AH, Redl H. Crosslinking strategies for silk fibroin hydrogels: promising biomedical materials. Biomed Mater. 2021;16: 022004.

    Article  CAS  PubMed  Google Scholar 

  33. Mu X, Sahoo JK, Cebe P, Kaplan DL. Photo-crosslinked silk fibroin for 3D printing. Polymers. 2020;12.

  34. Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials. 2005;26:2775–85.

    Article  CAS  PubMed  Google Scholar 

  35. Nguyen AT, Huang QL, Yang Z, Lin N, Xu G, Liu XY. Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance. Small. 2015;11:1039–54.

    Article  CAS  PubMed  Google Scholar 

  36. Bellissent-Funel M-C, Hassanali A, Havenith M, Henchman R, Pohl P, Sterpone F, et al. Water determines the structure and dynamics of proteins. Chem Rev. 2016;116:7673–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jaya Prakash N, Sarkar SS, Kandasubramanian B. Emerging strategies in stimuli-responsive silk architectures. Macromol Biosci. 2023;e2200573.

  38. Matsumoto A, Chen J, Collette AL, Kim UJ, Altman GH, Cebe P, et al. Mechanisms of silk fibroin sol-gel transitions. J Phys Chem B. 2006;110:21630–8.

    Article  CAS  PubMed  Google Scholar 

  39. Pham DT, Phewchan P, Navesit K, Chokamonsirikun A, Khemwong T, Tiyaboonchai W. Development of metronidazole-loaded in situ thermosensitive hydrogel for periodontitis treatment. Turk J Pharm Sci. 2021;18:510–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yan Y, Cheng B, Chen K, Cui W, Qi J, Li X, et al. Enhanced osteogenesis of bone marrow-derived mesenchymal stem cells by a functionalized silk fibroin hydrogel for bone defect repair. Adv Healthc Mater. 2019;8: e1801043.

    Article  PubMed  Google Scholar 

  41. Wu J, Zheng K, Huang X, Liu J, Liu H, Boccaccini AR, et al. Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in-situ bone formation in rat calvarial bone defects. Acta Biomater. 2019;91:60–71.

    Article  CAS  PubMed  Google Scholar 

  42. Kaewprasit K, Kobayashi T. Alcohol-triggered silk fibroin hydrogels having random coil and β-turn structures enhanced for cytocompatible cell response. J Appl Polymer Sci. 2019;137:48731.

    Article  Google Scholar 

  43. Yucel T, Cebe P, Kaplan DL. Vortex-induced injectable silk fibroin hydrogels. Biophys J. 2009;97:2044–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wei J, Sun XQ, Hou BX. Evaluation of silk fibroin-RGD-stem cell factor scaffold effect on adhesion, migration, and proliferation of stem cells of apical papilla. Stem Cells Int. 2021;2021:6612324.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89.

    Article  CAS  PubMed  Google Scholar 

  46. Yao D, Dong S, Lu Q, Hu X, Kaplan DL, Zhang B, et al. Salt-leached silk scaffolds with tunable mechanical properties. Biomacromol. 2012;13:3723–9.

    Article  CAS  Google Scholar 

  47. Laomeephol C, Guedes M, Ferreira H, Reis RL, Kanokpanont S, Damrongsakkul S, et al. Phospholipid-induced silk fibroin hydrogels and their potential as cell carriers for tissue regeneration. J Tissue Eng Regen Med. 2019;14:160–72.

    Article  PubMed  Google Scholar 

  48. Zhang F, Li JJ, Jiang R, Zhang SS, Zhu T, Forum SLJMS. Excellent cell compatibility in time controlled silk fibroin hydrogels. Mater Sci Forum. 2015;815:407–11.

    Article  Google Scholar 

  49. Lassenberger A, Martel A, Porcar L, Baccile N. Interpenetrated biosurfactant-silk fibroin networks—a SANS study. Soft Matter. 2021;17:2302–14.

    Article  CAS  PubMed  Google Scholar 

  50. Hasturk O, Sahoo JK, Kaplan DL. Synthesis and characterization of silk ionomers for layer-by-layer electrostatic deposition on individual mammalian cells. Biomacromol. 2020;21:2829–43.

    Article  CAS  Google Scholar 

  51. Skopinska-Wisniewska J, Wegrzynowska-Drzymalska K, Bajek A, Maj M, Sionkowska A. Is dialdehyde starch a valuable cross-linking agent for collagen/elastin based materials? J Mater Sci Mater Med. 2016;27:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Oryan A, Kamali A, Moshiri A, Baharvand H, Daemi H. Chemical crosslinking of biopolymeric scaffolds: current knowledge and future directions of crosslinked engineered bone scaffolds. Int J Biol Macromol. 2018;107:678–88.

    Article  CAS  PubMed  Google Scholar 

  53. Thakur G, Rodrigues FC, Singh K. Crosslinking biopolymers for advanced drug delivery and tissue engineering applications. Adv Exp Med Biol. 2018;1078:213–31.

    Article  CAS  PubMed  Google Scholar 

  54. Khanmohammadi M, Dastjerdi MB, Ai A, Ahmadi A, Godarzi A, Rahimi A, et al. Horseradish peroxidase-catalyzed hydrogelation for biomedical applications. Biomater Sci. 2018;6:1286–98.

    Article  CAS  PubMed  Google Scholar 

  55. Kobayashi S, Uyama H, Kimura S. Enzymatic polymerization. Chem Rev. 2001;101:3793–818.

    Article  CAS  PubMed  Google Scholar 

  56. Sahoo JK, Xu D, Falcucci T, Choi J, Hasturk O, Clark DS, et al. Horseradish peroxidase catalyzed silk-prefoldin composite hydrogel networks. ACS Appl Bio Mater. 2023;6:203–8.

    Article  CAS  PubMed  Google Scholar 

  57. Gonzalez-Obeso C, Backlund FG, Kaplan DL. Charge-modulated accessibility of tyrosine residues for silk-elastin copolymer cross-linking. Biomacromol. 2022;23:760–5.

    Article  CAS  Google Scholar 

  58. Tabatabai AP, Partlow BP, Raia N, Kaplan DL, Langmuir DFBJ. Silk molecular weight influences the kinetics of enzymatically cross-linked silk hydrogel formation. Langmuir. 2018;34:15383–7.

    Article  CAS  PubMed  Google Scholar 

  59. Fairbanks BD, Schwartz MP, Bowman CN, Anseth KS. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials. 2009;30:6702–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang L, Zhang Y, Xia Y, Xu C, Meng K, Lian J, et al. Photocross-linked silk fibroin/hyaluronic acid hydrogel loaded with hDPSC for pulp regeneration. Int J Biol Macromol. 2022;215:155–68.

    Article  CAS  PubMed  Google Scholar 

  61. Qian Y, Zheng Y, Jin J, Wu X, Xu K, Dai M, et al. Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold. Adv Mater (Deerfield Beach, Fla). 2022;34: e2200521.

    Article  Google Scholar 

  62. Cui X, Soliman BG, Alcala-Orozco CR, Li J, Vis MAM, Santos M, et al. Rapid photocrosslinking of silk hydrogels with high cell density and enhanced shape fidelity. Adv Healthc Mater. 2020;9:e1901667.

    Article  PubMed  Google Scholar 

  63. Bhattacharjee P, Fernandez-Perez J, Ahearne M. Potential for combined delivery of riboflavin and all-trans retinoic acid, from silk fibroin for corneal bioengineering. Mater Sci Eng C Mater Biol Appl. 2019;105: 110093.

    Article  CAS  PubMed  Google Scholar 

  64. Raia NR, Partlow BP, Mcgill M, Kimmerling EP, Ghezzi CE, Kaplan DL. Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials. 2017;131:58–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brown GCJ, Lim KS, Farrugia BL, Hooper GJ, Woodfield TBF. Covalent incorporation of heparin improves chondrogenesis in photocurable gelatin-methacryloyl hydrogels. Macromol Biosci. 2017;17.

  66. Schultz KM, Kyburz KA, Anseth KS. Measuring dynamic cell-material interactions and remodeling during 3D human mesenchymal stem cell migration in hydrogels. Proc Natl Acad Sci USA. 2015;112:E3757–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Monteiro N, Thrivikraman G, Athirasala A, Tahayeri A, França CM, Ferracane JL, et al. Photopolymerization of cell-laden gelatin methacryloyl hydrogels using a dental curing light for regenerative dentistry. Dental Mater. 2018;34:389–99.

    Article  CAS  Google Scholar 

  68. Xu X, Jerca VV, Hoogenboom R. Bioinspired double network hydrogels: from covalent double network hydrogels via hybrid double network hydrogels to physical double network hydrogels. Mater Horiz. 2021;8:1173–88.

    Article  CAS  PubMed  Google Scholar 

  69. Shi Y, Yu W, Liang X, Cheng J, Cao Y, Liu M, et al. Interpenetrating network expansion sponge based on chitosan and plasma for ultrafast hemostasis of arterial bleeding wounds. Carbohydr Polym. 2023;307: 120590.

    Article  CAS  PubMed  Google Scholar 

  70. Kuang D, Wu F, Yin Z, Zhu T, Xing T, Kundu SC, et al. Silk fibroin/polyvinyl pyrrolidone interpenetrating polymer network hydrogels. Polymers. 2018;10:153.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Jian G, Li D, Ying Q, Chen X, Zhai Q, Wang S, et al. Dual photo‐enhanced interpenetrating network hydrogel with biophysical and biochemical signals for infected bone defect healing. 2023

  72. Xiao W, Li J, Qu X, Wang L, Tan Y, Li K, et al. Cell-laden interpenetrating network hydrogels formed from methacrylated gelatin and silk fibroin via a combination of sonication and photocrosslinking approaches. Mater Sci Eng C Mater Biol Appl. 2019;99:57–67.

    Article  CAS  PubMed  Google Scholar 

  73. Qu X, Yan L, Liu S, Tan Y, Xiao J, Cao Y, et al. Preparation of silk fibroin/hyaluronic acid hydrogels with enhanced mechanical performance by a combination of physical and enzymatic crosslinking. J Biomater Sci Polym Ed. 2021;32:1635–53.

    Article  CAS  PubMed  Google Scholar 

  74. Sun M, Cheng J, Zhang J, Wu N, Zhao F, Li Z, et al. Stepwise cross-linking of fibroin and hyaluronic for 3D printing flexible scaffolds with tunable mechanical properties. ACS Biomater Sci Eng. 2021;7:916–25.

    Article  CAS  PubMed  Google Scholar 

  75. Wang L, Wang F, Xu B, Zhou M, Yu Y, Wang P, et al. Efficient regulation of the behaviors of silk fibroin hydrogel via enzyme-catalyzed coupling of hyaluronic acid. Langmuir ACS J Surf Colloids. 2021;37:478–89.

    Article  CAS  Google Scholar 

  76. Hu X, Lu Q, Sun L, Cebe P, Wang X, Zhang X, et al. Biomaterials from ultrasonication-induced silk fibroin−hyaluronic acid hydrogels. Biomacromol. 2010;11:3178–88.

    Article  CAS  Google Scholar 

  77. Jia W, Wang Q, Fan X, Dong A, Yu Y, Wang P. Mechanism and analysis of laccase-mediated coloration of silk fabrics. Fibers Polymers. 2018;19:868–76.

    Article  CAS  Google Scholar 

  78. Ni T, Liu M, Zhang Y, Cao Y, Pei R. 3D bioprinting of bone marrow mesenchymal stem cell-laden silk fibroin double network scaffolds for cartilage tissue repair. Bioconjug Chem. 2020;31:1938–47.

    Article  CAS  PubMed  Google Scholar 

  79. Chen H, Zhang Y, Ni T, Ding P, Zan Y, Cai X, et al. Construction of a silk fibroin/polyethylene glycol double network hydrogel with co-culture of HUVECs and UCMSCs for a functional vascular network. ACS Appl Bio Mater. 2021;4:406–19.

    Article  CAS  PubMed  Google Scholar 

  80. Motasadizadeh H, Tavakoli M, Damoogh S, Mottaghitalab F, Gholami M, Atyabi F, et al. Dual drug delivery system of teicoplanin and phenamil based on pH-sensitive silk fibroin/sodium alginate hydrogel scaffold for treating chronic bone infection. Biomaterials advances. 2022;139: 213032.

    Article  CAS  PubMed  Google Scholar 

  81. Zheng A, Wang X, Xin X, Peng L, Su T, Cao L, et al. Promoting lacunar bone regeneration with an injectable hydrogel adaptive to the microenvironment. Bioact Mater. 2023;21:403–21.

    CAS  PubMed  Google Scholar 

  82. Chuysinuan P, Nooeaid P, Thanyacharoen T, Techasakul S, Pavasant P, Kanjanamekanant K. Injectable eggshell-derived hydroxyapatite-incorporated fibroin-alginate composite hydrogel for bone tissue engineering. Int J Biol Macromol. 2021;193:799–808.

    Article  CAS  PubMed  Google Scholar 

  83. Abbass MMS, El-Rashidy AA, Sadek KM, Moshy SE, Radwan IA, Rady D, et al. hydrogels and dentin-pulp complex regeneration: from the benchtop to clinical translation. Polymers. 2020;12.

  84. Huang L, Huang J, Shao H, Hu X, Cao C, Fan S, et al. Silk scaffolds with gradient pore structure and improved cell infiltration performance. Mater Sci Eng C Mater Biol Appl. 2019;94:179–89.

    Article  CAS  PubMed  Google Scholar 

  85. Barlian A, Judawisastra H, Alfarafisa NM, Wibowo UA, Rosadi I. Chondrogenic differentiation of adipose-derived mesenchymal stem cells induced by L-ascorbic acid and platelet rich plasma on silk fibroin scaffold. PeerJ. 2018;6: e5809.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Jiang S, Yu Z, Zhang L, Wang G, Dai X, Lian X, et al. Effects of different aperture-sized type I collagen/silk fibroin scaffolds on the proliferation and differentiation of human dental pulp cells. Regenerat Biomater. 2021;8:rbab028.

    Article  Google Scholar 

  87. Pahlevanzadeh F, Emadi R, Valiani A, Kharaziha M, Poursamar SA, Bakhsheshi-Rad HR, et al. Three-dimensional printing constructs based on the chitosan for tissue regeneration: state of the art, developing directions and prospect Trends. Materials (Basel). 2020;13.

  88. Gu BK, Choi DJ, Park SJ, Kim YJ, Kim CH. 3D bioprinting technologies for tissue engineering applications. Adv Exp Med Biol. 2018;1078:15–28.

    Article  CAS  PubMed  Google Scholar 

  89. Woloszyk A, Holsten Dircksen S, Bostanci N, Müller R, Hofmann S, Mitsiadis TA. Influence of the mechanical environment on the engineering of mineralised tissues using human dental pulp stem cells and silk fibroin scaffolds. PLoS ONE. 2014;9: e111010.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Shi H, Zhou K, Wang M, Wang N, Song Y, Xiong W, et al. Integrating physicomechanical and biological strategies for BTE: biomaterials-induced osteogenic differentiation of MSCs. Theranostics. 2023;13:3245–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Han B, Cao C, Wang A, Zhao Y, Jin M, Wang Y, et al. Injectable double-network hydrogel-based three-dimensional cell culture systems for regenerating dental pulp. ACS Appl Mater Interfaces. 2023;15:7821–32.

    Article  CAS  PubMed  Google Scholar 

  92. Zhen L, Liang K, Luo J, Ke X, Tao S, Zhang M, et al. Mussel-inspired hydrogels for fluoride delivery and caries prevention. J Dent Res. 2022;101:1597–605.

    Article  CAS  PubMed  Google Scholar 

  93. Du J, Liu Y, Wu X, Sun J, Shi J, Zhang H, et al. BRD9-mediated chromatin remodeling suppresses osteoclastogenesis through negative feedback mechanism. Nat Commun. 2023;14:1413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang W, Wang X, Wang S, Zhao J, Xu L, Zhu C, et al. The use of injectable sonication-induced silk hydrogel for VEGF165 and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials. 2011;32:9415–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Shanxi Key R&D Planning Program (202202130501009), Shanxi Provincial Medical Key Scientific Research Project (2022XM56), Basic Research Program of Shanxi Province project (202203021211225), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2020L0207) and Shanxi Medical University School and Hospital of Stomatology Program (KY201804 and KY201902).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Zhao or Lu Wang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest relevant to this study to disclose.

Ethical statement

No animal experiments were carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, Y., Zhang, X. et al. Cross-Linking Methods of the Silk Protein Hydrogel in Oral and Craniomaxillofacial Tissue Regeneration. Tissue Eng Regen Med 21, 529–544 (2024). https://doi.org/10.1007/s13770-023-00624-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-023-00624-y

Keywords

Navigation