Skip to main content
Log in

Extraction and Characterization of Human Adipose Tissue-Derived Collagen: Toward Xeno-Free Tissue Engineering

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Collagen is a key component of connective tissue and has been frequently used in the fabrication of medical devices for tissue regeneration. Human-originated collagen is particularly appealing due to its low immune response as an allograft biomaterial compared to xenografts and its ability to accelerate the regeneration process. Ethically and economically, adipose tissues available from liposuction clinics are a good resource to obtain human collagen. However, studies are still scarce on the extraction and characterization of human collagen, which originates from adipose tissue. The aim of this study is to establish a novel and simple method to extract collagen from human adipose tissue, characterize the collagen, and compare it with commercial-grade porcine collagen for tissue engineering applications.

Methods:

We developed a method to extract the collagen from human adipose tissue under quasi-Good Manufacturing Practice (GMP) conditions, including freezing the tissue, blood removal, and ethanol-based purification. Various techniques, including protein quantification, decellularization assessment, SDS-PAGE, FTIR, and CD spectroscopy analysis, were used for characterization. Amino acid composition was compared with commercial collagen. Biocompatibility and cell proliferation tests were performed, and in vitro tests using collagen sponge scaffolds were conducted with statistical analysis.

Results:

Our results showed that this human adipose-derived collagen was equivalent in quality to commercially available porcine collagen. In vitro testing demonstrated high cell attachment and the promotion of cell proliferation.

Conclusion:

In conclusion, we developed a simple and novel method to extract and characterize collagen and extracellular matrix from human adipose tissue, offering a potential alternative to animal-derived collagen for xeno-free tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Langer R, Lanza R, Langer RS, Vacanti JP. Principles of tissue engineering. Academic Press; 2000.

    Google Scholar 

  2. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4:518–24.

    CAS  PubMed  Google Scholar 

  3. Rickne A, Sandström A. Swedish possibilities within tissue engineering and regenerative medicine. VINNOVA; 2009.

    Google Scholar 

  4. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    CAS  PubMed  Google Scholar 

  5. Langer R. Perspectives and challenges in tissue engineering and regenerative medicine. Adv Mater. 2009;21:3235–6.

    CAS  PubMed  Google Scholar 

  6. Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001;7:679–89.

    CAS  PubMed  Google Scholar 

  7. Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60:184–98.

    CAS  PubMed  Google Scholar 

  8. Malafaya PB, Silva GA, Reis RL. Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev. 2007;59:207–33.

    CAS  PubMed  Google Scholar 

  9. Thomson RC, Wake MC, Yaszemski MJ, Mikos AG. Biodegradable polymer scaffolds to regenerate organs. In: Biopolym Ii; 1995. p. 245–74.

  10. Kim B-S, Baez CE, Atala A. Biomaterials for tissue engineering. World J Urol. 2000;18:2–9.

    CAS  PubMed  Google Scholar 

  11. Kadler KE, Holmes DF, Trotter JA, Chapman JA. Collagen fibril formation. Biochem J. 1996;316:1–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang X, Li X, Bank RA, Agrawal CM. Effects of collagen unwinding and cleavage on the mechanical integrity of the collagen network in bone. Bone. 2002;4:11.

    Google Scholar 

  13. Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol. 2011;3:a004978.

    PubMed  PubMed Central  Google Scholar 

  14. Gorlov IF, Titov EI, Semenov GV, Slozhenkina MI, Sokolov AY, Omarov RS, et al. Collagen from porcine skin: a method of extraction and structural properties. Int J food Prop. 2018;21:1031–42.

    CAS  Google Scholar 

  15. Noorzai S, Verbeek CJR, Lay MC, Swan J. Collagen extraction from various waste bovine hide sources. Waste Biomass Valoriz. 2020;11:5687–98.

    CAS  Google Scholar 

  16. Rajan N, Habermehl J, Coté MF, Doillon CJ, Mantovani D. Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat Protoc. 2006;1:2753–8.

    CAS  PubMed  Google Scholar 

  17. Jafari H, Lista A, Siekapen MM, Ghaffari-Bohlouli P, Nie L, Alimoradi H, et al. Fish collagen: extraction, characterization, and applications for biomaterials engineering. Polymers (Basel). 2020;12:2230.

    CAS  PubMed  Google Scholar 

  18. Nune SK, Rama KS, Dirisala VR, Chavali MY. Electrospinning of collagen nanofiber scaffolds for tissue repair and regeneration. In: Nanostructures for novel therapy. Elsevier; 2017. p. 281–311.

  19. Kim G, Ahn S, Yoon H, Kim Y, Chun W. A cryogenic direct-plotting system for fabrication of 3D collagen scaffolds for tissue engineering. J Mater Chem. 2009;19:8817–23.

    CAS  Google Scholar 

  20. Kim W, Kim GH. An innovative cell-printed microscale collagen model for mimicking intestinal villus epithelium. Chem Eng J. 2018;334:2308–18.

    CAS  Google Scholar 

  21. Berisio R, Vitagliano L, Mazzarella L, Zagari A. Recent progress on collagen triple helix structure, stability and assembly. Protein Pept Lett. 2002;9:107–16.

    CAS  PubMed  Google Scholar 

  22. Brodsky B, Ramshaw JAM. The collagen triple-helix structure. Matrix Biol. 1997;15:545–54.

    CAS  PubMed  Google Scholar 

  23. Patino MG, Neiders ME, Andreana S, Noble B, Cohen RE. Collagen: an overview. Implant Dent. 2002;11:280–5.

    PubMed  Google Scholar 

  24. Armour AD, Fish JS, Woodhouse KA, Semple JL. A comparison of human and porcine acellularized dermis: interactions with human fibroblasts in vitro. Plast Reconstr Surg. 2006;117:845–56.

    CAS  PubMed  Google Scholar 

  25. Miller LE, Block JE. Perspectives on the clinical utility of allografts for bone regeneration within osseous defects: a narrative review. Orthop Res Rev. 2011;3:31–7.

    Google Scholar 

  26. Pollack SV. Silicone, fibrel, and collagen implantation for facial lines and wrinkles. J Dermatol Surg Oncol. 1990;16:957–61.

    CAS  PubMed  Google Scholar 

  27. Uitto J. Collagen polymorphism: isolation and partial characterization of α1 (I)-trimer molecules in normal human skin. Arch Biochem Biophys. 1979;192:371–9.

    CAS  PubMed  Google Scholar 

  28. Hackethal J, Mühleder S, Hofer A, Schneider KH, Prüller J, Hennerbichler S, et al. An effective method of Atelocollagen type 1/3 isolation from human placenta and its in vitro characterization in two-dimensional and three-dimensional cell culture applications. Tissue Eng Part C Methods. 2017;23:274–85.

    CAS  PubMed  Google Scholar 

  29. Hackworth S. ISAPS international survey on aesthetic/cosmetic procedures performed in 2011. Int Soc Aesthetic Plast Surg. 2012.

  30. Data M. Cosmetic surgery national data bank statistics. Am Soc Aesthetic Plast Surg. 2016.

  31. Leitner BP, Huang S, Brychta RJ, Duckworth CJ, Baskin AS, McGehee S, et al. Mapping of human brown adipose tissue in lean and obese young men. Proc Natl Acad Sci U S A. 2017;114:8649–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Silva KR, Côrtes I, Liechocki S, Carneiro JR, Souza AA, Borojevic R, et al. Characterization of stromal vascular fraction and adipose stem cells from subcutaneous, preperitoneal and visceral morbidly obese human adipose tissue depots. PLoS One. 2017;12:e0174115.

    PubMed  PubMed Central  Google Scholar 

  33. Rodriguez A-M, Elabd C, Amri E-Z, Ailhaud G, Dani C. The human adipose tissue is a source of multipotent stem cells. Biochimie. 2005;87:125–8.

    CAS  PubMed  Google Scholar 

  34. Choi JS, Choi YC, Kim JD, Kim EJ, Lee HY, Kwon IC, et al. Adipose tissue: a valuable resource of biomaterials for soft tissue engineering. Macromol Res. 2014;22:932–47.

    CAS  Google Scholar 

  35. Manual I. Quick StartTM Bradford Protein Assay. BIO-RAD; 2019.

  36. Koopman R, Schaart G, Hesselink MK. Optimisation of oil red O staining permits combination with immunofluorescence and automated quantification of lipids. Histochem Cell Biol. 2001;116:63–8.

    CAS  PubMed  Google Scholar 

  37. Phillips K, McCallum N, Welch L. A comparison of methods for forensic DNA extraction: Chelex-100® and the QIAGEN DNA Investigator Kit (manual and automated). Forensic Sci Int Genet. 2012;6:282–5.

    CAS  PubMed  Google Scholar 

  38. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.

    CAS  PubMed  Google Scholar 

  39. Gopinath A, Reddy SMM, Madhan B, Shanmguam G, Rao JR. Effect of aqueous ethanol on the triple helical structure of collagen. Eur Biophys J. 2014;43:643–52.

    CAS  PubMed  Google Scholar 

  40. Jones AW. Alcohol, its analysis in blood and breath for forensic purposes, impairment effects, and acute toxicity. Wiley Interdiscip Rev Forensic Sci. 2019;1:e1353.

    Google Scholar 

  41. Pierleoni C, Verdenelli F, Castellucci M, Cinti S. Fibronectins and basal lamina molecules expression in human subcutaneous white adipose tissue. Eur J Histochem EJH. 1998;42:183–8.

    CAS  PubMed  Google Scholar 

  42. Wang Y, Bao J, Wu Q, Zhou Y, Li Y, Wu X, et al. Method for perfusion decellularization of porcine whole liver and kidney for use as a scaffold for clinical-scale bioengineering engrafts. Xenotransplantation. 2015;22:48–61.

    CAS  PubMed  Google Scholar 

  43. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675–83.

    CAS  PubMed  Google Scholar 

  44. Ramm R, Goecke T, Theodoridis K, Hoeffler K, Sarikouch S, Findeisen K, et al. Decellularization combined with enzymatic removal of N-linked glycans and residual DNA reduces inflammatory response and improves performance of porcine xenogeneic pulmonary heart valves in an ovine in vivo model. Xenotransplantation. 2020;27:e12571.

    PubMed  Google Scholar 

  45. Ledward DA. Gelation of gelatin. Funct Food Macromol. 1986; 171–201.

  46. Prestes RC. Collagen and its derivatives: characteristics and applications in meat products. UNOPAR Científica Ciências Biológicas e da Saúde. 2013;15:65–74.

    Google Scholar 

  47. Bhuimbar MV, Bhagwat PK, Dandge PB. Extraction and characterization of acid soluble collagen from fish waste: development of collagen-chitosan blend as food packaging film. J Environ Chem Eng. 2019;7:102983.

    CAS  Google Scholar 

  48. Santos MH, Silva RM, Dumont VC, Neves JS, Mansur HS, Heneine LGD. Extraction and characterization of highly purified collagen from bovine pericardium for potential bioengineering applications. Mater Sci Eng C. 2013;33:790–800.

    CAS  Google Scholar 

  49. Holmes R, Kirk S, Tronci G, Yang X, Wood D. Influence of telopeptides on the structural and physical properties of polymeric and monomeric acid-soluble type I collagen. Mater Sci Eng C. 2017;77:823–7.

    CAS  Google Scholar 

  50. Lin YK, Liu DC. Effects of pepsin digestion at different temperatures and times on properties of telopeptide-poor collagen from bird feet. Food Chem. 2006;94:621–5.

    CAS  Google Scholar 

  51. Abe Y, Krimm S. Normal vibrations of crystalline polyglycine I. Biopolym Orig Res Biomol. 1972;11:1817–39.

    CAS  Google Scholar 

  52. Jeong H-S, Venkatesan J, Kim S-K. Isolation and characterization of collagen from marine fish (Thunnus obesus). Biotechnol bioprocess Eng. 2013;18:1185–91.

    CAS  Google Scholar 

  53. Luo QB, Chi CF, Yang F, Zhao YQ, Wang B. Physicochemical properties of acid-and pepsin-soluble collagens from the cartilage of Siberian sturgeon. Environ Sci Pollut Res. 2018;25:31427–38.

    CAS  Google Scholar 

  54. Payne KJ, Veis A. Fourier transform IR spectroscopy of collagen and gelatin solutions: deconvolution of the amide I band for conformational studies. Biopolym Orig Res Biomol. 1988;27:1749–60.

    CAS  Google Scholar 

  55. Sun L, Hou H, Li B, Zhang Y. Characterization of acid-and pepsin-soluble collagen extracted from the skin of Nile tilapia (Oreochromis niloticus). Int J Biol Macromol. 2017;99:8–14.

    CAS  PubMed  Google Scholar 

  56. Sinthusamran S, Benjakul S, Kishimura H. Comparative study on molecular characteristics of acid soluble collagens from skin and swim bladder of seabass (Lates calcarifer). Food Chem. 2013;138:2435–41.

    CAS  PubMed  Google Scholar 

  57. Silva JC, Barros AA, Aroso IM, Fassini D, Silva TH, Reis RL, et al. Extraction of collagen/gelatin from the marine demosponge Chondrosia reniformis (Nardo, 1847) using water acidified with carbon dioxide–process optimization. Ind Eng Chem Res. 2016;55:6922–30.

    CAS  Google Scholar 

  58. Ge B, Wang H, Li J, Liu H, Yin Y, Zhang N, et al. Comprehensive assessment of Nile tilapia skin (Oreochromis niloticus) collagen hydrogels for wound dressings. Mar Drugs. 2020;18:178.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Usha R, Ramasami T. The effects of urea and n-propanol on collagen denaturation: using DSC, circular dicroism and viscosity. Thermochim Acta. 2004;409:201–6.

    CAS  Google Scholar 

  60. Kariduraganavar MY, Kittur AA, Kamble RR. Polymer synthesis and processing. In: Natural and synthetic biomedical polymers. Elsevier; 2014. p. 1–31.

  61. Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gelse K, Pöschl E, Aigner T. Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev. 2003;55:1531–46.

    CAS  PubMed  Google Scholar 

  63. Meyer M. Processing of collagen based biomaterials and the resulting materials properties. Biomed Eng Online. 2019;18:1–74.

    Google Scholar 

  64. Ahmad M, Benjakul S, Nalinanon S. Compositional and physicochemical characteristics of acid solubilized collagen extracted from the skin of unicorn leatherjacket (Aluterus monoceros). Food Hydrocoll. 2010;24:588–94.

    CAS  Google Scholar 

  65. Cecen B, Kozaci D, Yuksel M, Erdemli D, Bagriyanik A, Havitcioglu H. Biocompatibility of MG-63 cells on collagen, poly-L-lactic acid, hydroxyapatite scaffolds with different parameters. J Appl Biomater Funct Mater. 2015;13:10–6.

    CAS  PubMed  Google Scholar 

  66. Li Y, Liu Y, Li R, Bai H, Zhu Z, Zhu L, et al. Collagen-based biomaterials for bone tissue engineering. Mater Des. 2021;210:110049.

    CAS  Google Scholar 

  67. Mandal BB, Kundu SC. Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials. 2009;30:2956–65.

    CAS  PubMed  Google Scholar 

  68. Castner DG, Ratner BD. Biomedical surface science: foundations to frontiers. Surf Sci. 2002;500:28–60.

    CAS  Google Scholar 

  69. Deng Y, Kuiper J. Functional 3D tissue engineering scaffolds. Elsevier; 2017.

    Google Scholar 

  70. Golub EE, Boesze-Battaglia K. The role of alkaline phosphatase in mineralization. Curr Opin Orthop. 2007;18:444–8.

    Google Scholar 

  71. Aarsland A, Chinkes D, Wolfe RR. Hepatic and whole-body fat synthesis in humans during carbohydrate overfeeding. Am J Clin Nutr. 1997;65:1774–82.

    CAS  PubMed  Google Scholar 

  72. Shu Y, Ren H, Ao R, Qi WC, Zhang ZS. Comparison of physical and chemical characteristics of collagen from the skin of cod (Gadus macrocephaius). Genet Mol Res. 2017;16.

  73. Liu D, Wei G, Li T, Hu J, Lu N, Regenstein JM, et al. Effects of alkaline pretreatments and acid extraction conditions on the acid-soluble collagen from grass carp (Ctenopharyngodon idella) skin. Food Chem. 2015;172:836–43.

    CAS  PubMed  Google Scholar 

  74. Milan PB, Amini N, Joghataei MT, Ebrahimi L, Amoupour M, Sarveazad A, et al. Decellularized human amniotic membrane: from animal models to clinical trials. Methods. 2020;171:11–9.

    CAS  PubMed  Google Scholar 

  75. Chakka AK, Muhammed A, Sakhare PZ, Bhaskar N. Poultry processing waste as an alternative source for mammalian gelatin: extraction and characterization of gelatin from chicken feet using food grade acids. Waste Biomass Valoriz. 2017;8:2583–93.

    CAS  Google Scholar 

  76. Sano A, Maeda M, Nagahara S, Ochiya T, Honma K, Itoh H, et al. Atelocollagen for protein and gene delivery. Adv Drug Deliv Rev. 2003;55:1651–77.

    CAS  PubMed  Google Scholar 

  77. Lynn AK, Yannas IV, Bonfield W. Antigenicity and immunogenicity of collagen. J Biomed Mater Res Part B Appl Biomater An Off J Soc Biomater Japanese Soc Biomater. 2004;71:343–54.

    CAS  Google Scholar 

  78. Ogawa M, Moody MW, Portier RJ, Bell J, Schexnayder MA, Losso JN. Biochemical properties of black drum and sheepshead seabream skin collagen. J Agric Food Chem. 2003;51:8088–92.

    CAS  PubMed  Google Scholar 

  79. Ahn H, Gong DJ, Lee HH, Seo JY, Song KM, Eom SJ, et al. Mechanical properties of porcine and fish skin-based collagen and conjugated collagen fibers. Polymers (Basel). 2021;13:2151.

    CAS  PubMed  Google Scholar 

  80. Nik Aisyah NM, Nurul H, Azhar ME, Fazilah A. Poultry as an alternative source of gelatin. Heal Environ J. 2014;5:37–49.

    Google Scholar 

  81. Blanco M, Vázquez JA, Pérez-Martín RI, Sotelo CG. Hydrolysates of fish skin collagen: an opportunity for valorizing fish industry byproducts. Mar Drugs. 2017;15:131.

    PubMed  PubMed Central  Google Scholar 

  82. Okuyama K, Miyama K, Mizuno K, Bächinger HP. Crystal structure of (Gly-Pro-Hyp) 9: implications for the collagen molecular model. Biopolymers. 2012;97:607–16.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Promotion of Innovative Businesses for Regulation-Free Special Zones funded by the Ministry of SMEs and Startups (MSS, Korea, Grant No. P0021262) and was partially supported by the National Research Foundation of Korea grant funded (Grant No. NRF-2021R1C1C1009004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minseong Kim or Bongsu Jung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This study was approved by the institutional review board (IRB) of the Daegu-Gyeongbuk Medical Innovation Foundation (IRB No. DGMIF-20200108-HR-001-03). There were no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Yeo, M., Lee, K. et al. Extraction and Characterization of Human Adipose Tissue-Derived Collagen: Toward Xeno-Free Tissue Engineering. Tissue Eng Regen Med 21, 97–109 (2024). https://doi.org/10.1007/s13770-023-00612-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-023-00612-2

Keywords

Navigation