Skip to main content
Log in

An Organotypic Human Lymph Node Model Reveals the Importance of Fibroblastic Reticular Cells for Dendritic Cell Function

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Human lymph node (HuLN) models have emerged with invaluable potential for immunological research and therapeutic application given their fundamental role in human health and disease. While fibroblastic reticular cells (FRCs) are instrumental to HuLN functioning, their inclusion and recognition of importance for organotypic in vitro lymphoid models remain limited.

Methods:

Here, we established an in vitro three-dimensional (3D) model in a collagen-fibrin hydrogel with primary FRCs and a dendritic cell (DC) cell line (MUTZ-3 DC). To study and characterise the cellular interactions seen in this 3D FRC-DC organotypic model compared to the native HuLN; flow cytometry, immunohistochemistry, immunofluorescence and cytokine/chemokine analysis were performed.

Results:

FRCs were pivotal for survival, proliferation and localisation of MUTZ-3 DCs. Additionally, we found that CD1a expression was absent on MUTZ-3 DCs that developed in the presence of FRCs during cytokine-induced MUTZ-3 DC differentiation, which was also seen with primary monocyte-derived DCs (moDCs). This phenotype resembled HuLN-resident DCs, which we detected in primary HuLNs, and these CD1a MUTZ-3 DCs induced T cell proliferation within a mixed leukocyte reaction (MLR), indicating a functional DC status. FRCs expressed podoplanin (PDPN), CD90 (Thy-1), CD146 (MCAM) and Gremlin-1, thereby resembling the DC supporting stromal cell subset identified in HuLNs.

Conclusion:

This 3D FRC-DC organotypic model highlights the influence and importance of FRCs for DC functioning in a more realistic HuLN microenvironment. As such, this work provides a starting point for the development of an in vitro HuLN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Roozendaal R, Mebius RE, Kraal G. The conduit system of the lymph node. Int Immunol. 2008;20:1483–7.

    Article  CAS  PubMed  Google Scholar 

  2. Krishnamurty AT, Turley SJ. Lymph node stromal cells: cartographers of the immune system. Nat Immunol. 2020;21:369–80.

    Article  CAS  PubMed  Google Scholar 

  3. Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N, Germain RN. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity. 2006;25:989–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roozendaal R, Mebius RE. Stromal cell-immune cell interactions. Annu Rev Immunol. 2011;29:23–43.

    Article  CAS  PubMed  Google Scholar 

  5. Rodda LB, Lu E, Bennett ML, Sokol CL, Wang X, Luther SA, et al. Single-cell rna sequencing of lymph node stromal cells reveals niche-associated heterogeneity. Immunity. 2018;48:1014e6-28e6.

    Article  Google Scholar 

  6. Grasso C, Pierie C, Mebius RE, van Baarsen LGM. Lymph node stromal cells: Subsets and functions in health and disease. Trends Immunol. 2021;42:920–36.

    Article  CAS  PubMed  Google Scholar 

  7. Acton SE, Astarita JL, Malhotra D, Lukacs-Kornek V, Franz B, Hess PR, et al. Podoplanin-rich stromal networks induce dendritic cell motility via activation of the c-type lectin receptor clec-2. Immunity. 2012;37:276–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Girard JP, Moussion C, Forster R. Hevs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol. 2012;12:762–73.

    Article  CAS  PubMed  Google Scholar 

  9. Acton SE, Onder L, Novkovic M, Martinez VG, Ludewig B. Communication, construction, and fluid control: lymphoid organ fibroblastic reticular cell and conduit networks. Trends Immunol. 2021;42:782–94.

    Article  CAS  PubMed  Google Scholar 

  10. Collin M, Bigley V. Human dendritic cell subsets: An update. Immunology. 2018;154:3–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gerner MY, Kastenmuller W, Ifrim I, Kabat J, Germain RN. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity. 2012;37:364–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gerner MY, Casey KA, Kastenmuller W, Germain RN. Dendritic cell and antigen dispersal landscapes regulate t cell immunity. J Exp Med. 2017;214:3105–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baptista AP, Gola A, Huang Y, Milanez-Almeida P, Torabi-Parizi P, Urban JF Jr, et al. The chemoattractant receptor ebi2 drives intranodal naive cd4(+) t cell peripheralization to promote effective adaptive immunity. Immunity. 2019;50:1188e6-201e6.

    Article  Google Scholar 

  14. van de Ven R, van den Hout MF, Lindenberg JJ, Sluijter BJ, van Leeuwen PA, Lougheed SM, et al. Characterization of four conventional dendritic cell subsets in human skin-draining lymph nodes in relation to t-cell activation. Blood. 2011;118:2502–10.

    Article  PubMed  Google Scholar 

  15. Segura E, Soumelis V. Of human dc migrants and residents. Immunity. 2017;46:342–4.

    Article  CAS  PubMed  Google Scholar 

  16. Novkovic M, Onder L, Cupovic J, Abe J, Bomze D, Cremasco V, et al. Topological small-world organization of the fibroblastic reticular cell network determines lymph node functionality. PLoS Biol. 2016;14:e1002515.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kapoor VN, Muller S, Keerthivasan S, Brown M, Chalouni C, Storm EE, et al. Gremlin 1(+) fibroblastic niche maintains dendritic cell homeostasis in lymphoid tissues. Nat Immunol. 2021;22:571–85.

    Article  CAS  PubMed  Google Scholar 

  18. Ozulumba T, Montalbine AN, Ortiz-Cardenas JE, Pompano RR. New tools for immunologists: models of lymph node function from cells to tissues. Front Immunol. 2023;14:1183286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goyal G, Prabhala P, Mahajan G, Bausk B, Gilboa T, Xie L, et al. Ectopic lymphoid follicle formation and human seasonal influenza vaccination responses recapitulated in an organ-on-a-chip. Adv Sci (Weinh). 2022;9:e2103241.

    Article  PubMed  Google Scholar 

  20. Wagar LE, Salahudeen A, Constantz CM, Wendel BS, Lyons MM, Mallajosyula V, et al. Modeling human adaptive immune responses with tonsil organoids. Nat Med. 2021;27:125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Belanger MC, Ball AG, Catterton MA, Kinman AWL, Anbaei P, Groff BD, et al. Acute lymph node slices are a functional model system to study immunity ex vivo. ACS Pharmacol Transl Sci. 2021;4:128–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Knoblich K, Cruz Migoni S, Siew SM, Jinks E, Kaul B, Jeffery HC, et al. The human lymph node microenvironment unilaterally regulates t-cell activation and differentiation. PLoS Biol. 2018;16:e2005046.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Braham MVJ, van Binnendijk RS, Buisman AM, Mebius RE, de Wit J, van Els C. A synthetic human 3d in vitro lymphoid model enhancing b-cell survival and functional differentiation. iScience. 2023;26:105741.

    Article  CAS  PubMed  Google Scholar 

  24. Kwee BJ, Akue A, Sung KE. On-chip human lymph node stromal network for evaluating dendritic cell and t-cell trafficking. BIORXIV. 2023;03:533042.

    Google Scholar 

  25. Kosten IJ, Spiekstra SW, de Gruijl TD, Gibbs S. Mutz-3 derived langerhans cells in human skin equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure. Toxicol Appl Pharmacol. 2015;287:35–42.

    Article  CAS  PubMed  Google Scholar 

  26. Koning JJ, Rodrigues Neves CT, Schimek K, Thon M, Spiekstra SW, Waaijman T, et al. A multi-organ-on-chip approach to investigate how oral exposure to metals can cause systemic toxicity leading to langerhans cell activation in skin. Front Toxicol. 2021;3:824825.

    Article  PubMed  Google Scholar 

  27. Kosten IJ, Buskermolen JK, Spiekstra SW, de Gruijl TD, Gibbs S. Gingiva equivalents secrete negligible amounts of key chemokines involved in langerhans cell migration compared to skin equivalents. J Immunol Res. 2015;2015:627125.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fletcher AL, Malhotra D, Acton SE, Lukacs-Kornek V, Bellemare-Pelletier A, Curry M, et al. Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells. Front Immunol. 2011;2:35.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Masterson AJ, Sombroek CC, De Gruijl TD, Graus YM, van der Vliet HJ, Lougheed SM, et al. Mutz-3, a human cell line model for the cytokine-induced differentiation of dendritic cells from cd34+ precursors. Blood. 2002;100:701–3.

    Article  CAS  PubMed  Google Scholar 

  30. Michielon E, Lopez Gonzalez M, Burm JLA, Waaijman T, Jordanova ES, de Gruijl TD, Gibbs S. Micro-environmental cross-talk in an organotypic human melanoma-in-skin model directs m2-like monocyte differentiation via il-10. Cancer Immunol Immunother. 2020;69:2319–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roet JEG, Mikula AM, Kok Md, Chadick CH, Vallejo JJG, Roest HP, et al. Unbiased method for spectral analysis of cells with great diversity of autofluorescence spectra. BIORXIV. 2023;07:550943.

    Google Scholar 

  32. Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. Idisco: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell. 2014;159:896–910.

    Article  CAS  PubMed  Google Scholar 

  33. Larsson K, Lindstedt M, Borrebaeck CA. Functional and transcriptional profiling of mutz-3, a myeloid cell line acting as a model for dendritic cells. Immunology. 2006;117:156–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eom J, Park SM, Feisst V, Chen CJ, Mathy JE, McIntosh JD, et al. Distinctive subpopulations of stromal cells are present in human lymph nodes infiltrated with melanoma. Cancer Immunol Res. 2020;8:990–1003.

    Article  CAS  PubMed  Google Scholar 

  35. Freynet O, Marchal-Somme J, Jean-Louis F, Mailleux A, Crestani B, Soler P, Michel L. Human lung fibroblasts may modulate dendritic cell phenotype and function: results from a pilot in vitro study. Respir Res. 2016;17:36.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Seguier S, Tartour E, Guerin C, Couty L, Lemitre M, Lallement L, et al. Inhibition of the differentiation of monocyte-derived dendritic cells by human gingival fibroblasts. PLoS ONE. 2013;8:e70937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saalbach A, Klein C, Sleeman J, Sack U, Kauer F, Gebhardt C, et al. Dermal fibroblasts induce maturation of dendritic cells. J Immunol. 2007;178:4966–74.

    Article  CAS  PubMed  Google Scholar 

  38. Engering A, van Vliet SJ, Hebeda K, Jackson DG, Prevo R, Singh SK, et al. Dynamic populations of dendritic cell-specific icam-3 grabbing nonintegrin-positive immature dendritic cells and liver/lymph node-specific icam-3 grabbing nonintegrin-positive endothelial cells in the outer zones of the paracortex of human lymph nodes. Am J Pathol. 2004;164:1587–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Askmyr D, Abolhalaj M, Gomez Jimenez D, Greiff L, Lindstedt M, Lundberg K. Pattern recognition receptor expression and maturation profile of dendritic cell subtypes in human tonsils and lymph nodes. Hum Immunol. 2021;82:976–81.

    Article  CAS  PubMed  Google Scholar 

  40. Min J, Yang D, Kim M, Haam K, Yoo A, Choi JH, et al. Inflammation induces two types of inflammatory dendritic cells in inflamed lymph nodes. Exp Mol Med. 2018;50:e458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Park SJ, Nakagawa T, Kitamura H, Atsumi T, Kamon H, Sawa S, et al. Il-6 regulates in vivo dendritic cell differentiation through stat3 activation. J Immunol. 2004;173:3844–54.

    Article  CAS  PubMed  Google Scholar 

  42. Kirkling ME, Cytlak U, Lau CM, Lewis KL, Resteu A, Khodadadi-Jamayran A, et al. Notch signaling facilitates in vitro generation of cross-presenting classical dendritic cells. Cell Rep. 2018;23:3658e6-72e6.

    Article  Google Scholar 

  43. Cheng P, Nefedova Y, Corzo CA, Gabrilovich DI. Regulation of dendritic-cell differentiation by bone marrow stroma via different notch ligands. Blood. 2007;109:507–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fasnacht N, Huang HY, Koch U, Favre S, Auderset F, Chai Q, et al. Specific fibroblastic niches in secondary lymphoid organs orchestrate distinct notch-regulated immune responses. J Exp Med. 2014;211:2265–79.

    Article  PubMed  PubMed Central  Google Scholar 

  45. van Pul KM, Vuylsteke R, van de Ven R, Te Velde EA, Rutgers EJT, van den Tol PM, et al. Selectively hampered activation of lymph node-resident dendritic cells precedes profound t cell suppression and metastatic spread in the breast cancer sentinel lymph node. J Immunother Cancer. 2019;7:133.

    Article  PubMed  PubMed Central  Google Scholar 

  46. van Pul KM, Fransen MF, van de Ven R, de Gruijl TD. Immunotherapy goes local: the central role of lymph nodes in driving tumor infiltration and efficacy. Front Immunol. 2021;12:643291.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Angel CE, Chen CJ, Horlacher OC, Winkler S, John T, Browning J, et al. Distinctive localization of antigen-presenting cells in human lymph nodes. Blood. 2009;113:1257–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, et al. Human cd141+ (bdca-3)+ dendritic cells (dcs) represent a unique myeloid dc subset that cross-presents necrotic cell antigens. J Exp Med. 2010;207:1247–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Saalbach A, Klein C, Schirmer C, Briest W, Anderegg U, Simon JC. Dermal fibroblasts promote the migration of dendritic cells. J Invest Dermatol. 2010;130:444–54.

    Article  CAS  PubMed  Google Scholar 

  50. Hoves S, Krause SW, Schutz C, Halbritter D, Scholmerich J, Herfarth H, Fleck M. Monocyte-derived human macrophages mediate anergy in allogeneic t cells and induce regulatory t cells. J Immunol. 2006;177:2691–8.

    Article  CAS  PubMed  Google Scholar 

  51. Ugur M, Labios RJ, Fenton C, Knopper K, Jobin K, Imdahl F, et al. Lymph node medulla regulates the spatiotemporal unfolding of resident dendritic cell networks. Immunity. 2023;56:1778e10-93e10.

    Article  Google Scholar 

  52. Hernandez-Lopez C, Valencia J, Hidalgo L, Martinez VG, Zapata AG, Sacedon R, et al. Cxcl12/cxcr4 signaling promotes human thymic dendritic cell survival regulating the bcl-2/bax ratio. Immunol Lett. 2008;120:72–8.

    Article  CAS  PubMed  Google Scholar 

  53. Tiberio L, Del Prete A, Schioppa T, Sozio F, Bosisio D, Sozzani S. Chemokine and chemotactic signals in dendritic cell migration. Cell Mol Immunol. 2018;15:346–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt DP, et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the t cell area of the lymph node. Immunity. 2005;22:19–29.

    Article  CAS  PubMed  Google Scholar 

  55. van Tienderen GS, van Beek MEA, Schurink IJ, Rosmark O, Roest HP, Tieleman J, et al. Modelling metastatic colonization of cholangiocarcinoma organoids in decellularized lung and lymph nodes. Front Oncol. 2022;12:1101901.

    Article  PubMed  Google Scholar 

  56. Morgado FN, da Silva AVA, Porrozzi R. Infectious diseases and the lymphoid extracellular matrix remodeling: a focus on conduit system. Cells. 2020;9:725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sutherland TE, Dyer DP, Allen JE. The extracellular matrix and the immune system: a mutually dependent relationship. Science. 2023;379:eabp8964.

    Article  CAS  PubMed  Google Scholar 

  58. Choi YS, Jeong E, Lee JS, Kim SK, Jo SH, Kim YG, et al. Immunomodulatory scaffolds derived from lymph node extracellular matrices. ACS Appl Mater Interfaces. 2021;13:14037–49.

    Article  CAS  PubMed  Google Scholar 

  59. Rasaiyaah J, Noursadeghi M, Kellam P, Chain B. Transcriptional and functional defects of dendritic cells derived from the mutz-3 leukaemia line. Immunology. 2009;127:429–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lundberg K, Albrekt AS, Nelissen I, Santegoets S, de Gruijl TD, Gibbs S, Lindstedt M. Transcriptional profiling of human dendritic cell populations and models–unique profiles of in vitro dendritic cells and implications on functionality and applicability. PLoS One. 2013;8:e52875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Santegoets SJ, van den Eertwegh AJ, van de Loosdrecht AA, Scheper RJ, de Gruijl TD. Human dendritic cell line models for dc differentiation and clinical dc vaccination studies. J Leukoc Biol. 2008;84:1364–73.

    Article  CAS  PubMed  Google Scholar 

  62. Santegoets SJ, Schreurs MW, Masterson AJ, Liu YP, Goletz S, Baumeister H, et al. In vitro priming of tumor-specific cytotoxic t lymphocytes using allogeneic dendritic cells derived from the human mutz-3 cell line. Cancer Immunol Immunother. 2006;55:1480–90.

    Article  PubMed  Google Scholar 

  63. Santegoets SJ, Masterson AJ, van der Sluis PC, Lougheed SM, Fluitsma DM, van den Eertwegh AJ, et al. A cd34(+) human cell line model of myeloid dendritic cell differentiation: evidence for a cd14(+)cd11b(+) langerhans cell precursor. J Leukoc Biol. 2006;80:1337–44.

    Article  CAS  PubMed  Google Scholar 

  64. Santegoets SJ, Bontkes HJ, Stam AG, Bhoelan F, Ruizendaal JJ, van den Eertwegh AJ, et al. Inducing antitumort cell immunity: comparative functional analysis of interstitial versus langerhans dendritic cells in a human cell line model. J Immunol. 2008;180:4540–9.

    Article  CAS  PubMed  Google Scholar 

  65. Ouwehand K, Spiekstra SW, Waaijman T, Breetveld M, Scheper RJ, de Gruijl TD, Gibbs S. Ccl5 and ccl20 mediate immigration of langerhans cells into the epidermis of full thickness human skin equivalents. Eur J Cell Biol. 2012;91:765–73.

    Article  CAS  PubMed  Google Scholar 

  66. Ouwehand K, Oosterhoff D, Breetveld M, Scheper RJ, de Gruijl TD, Gibbs S. Irritant-induced migration of langerhans cells coincides with an il-10-dependent switch to a macrophage-like phenotype. J Invest Dermatol. 2011;131:418–25.

    Article  CAS  PubMed  Google Scholar 

  67. Park SM, Angel CE, McIntosh JD, Brooks AE, Middleditch M, Chen CJ, et al. Sphingosine-1-phosphate lyase is expressed by cd68+ cells on the parenchymal side of marginal reticular cells in human lymph nodes. Eur J Immunol. 2014;44:2425–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The presented work was funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 847551 ARCAID. AM is supported by NWO ZonMw TOP Grant (91217014). AJA is supported by NWO Veni ZonMw (09150162010163). JJK is supported by NWO LymphChip (1292.19.019). CMdW is supported by Cancer Center Amsterdam (Grant No. CCA2019-9-57 and CCA2020-9-73). LJWvdL is supported by funding from the Convergence Health Technology Flagship grant (Organ Transplantation) and Medical Delta program grant (Regenerative Medicine 4D). The authors would like to thank and acknowledge the expert help of the Microscopy & Cytometry Core Facility at Amsterdam UMC (location Vrije Universiteit Amsterdam). We thank Kim Ober and Dr. Monique Verstegen from the Erasmus MC, Rotterdam for sample logistics.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AIM, JJK, CMdW, SG and REM; Methodology: AIM, SWS, JJK, CMdW, SG and REM; Investigation: AIM; Validation: AIM, SWS, AJA, JJK and CMdW; Software: AM and MdK; Data curation: AIM; Writing-original draft preparation: AIM; Writing-review and editing: AIM, JJK, CMdW, SG and REM; Supervision: JJK, CMdW, SG and REM; Funding acquisition: SG and REM; Ethical approval and donor information: LJWvdL and HPR. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Reina E. Mebius.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interests.

Ethical statement

HuLNs were obtained from donors during liver transplant procedures performed at the Erasmus MC, Rotterdam, The Netherlands, in accordance to the Medical Ethical Committee (Medisch Ethische Toetsings Commissie; METC) of Erasmus MC (MEC-2014-060). All patients (liver transplant recipients) gave written informed consent to use their donor tissue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morrison, A.I., Mikula, A.M., Spiekstra, S.W. et al. An Organotypic Human Lymph Node Model Reveals the Importance of Fibroblastic Reticular Cells for Dendritic Cell Function. Tissue Eng Regen Med 21, 455–471 (2024). https://doi.org/10.1007/s13770-023-00609-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-023-00609-x

Keywords

Navigation