Skip to main content
Log in

Delivery of SAV-siRNA via Exosomes from Adipose-Derived Stem Cells for the Treatment of Myocardial Infarction

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Myocardial infarction (MI) leads to cardiomyocyte death, poor cardiac remodeling, and heart failure, making it a major cause of mortality and morbidity. To restore cardiac pumping function, induction of cardiomyocyte regeneration has become a focus of academic interest. The Hippo pathway is known to regulate cardiomyocyte proliferation and heart size, and its inactivation allows adult cardiomyocytes to re-enter the cell cycle.

Methods:

In this study, we investigated whether exosomes from adipose-derived stem cells (ADSCs) could effectively transfer siRNA for the Hippo pathway regulator Salvador (SAV) into cardiomyocytes to induce cardiomyocyte regeneration in a mouse model of MI.

Results:

Our results showed that exosomes loaded with SAV-siRNA effectively transferred siRNA into cardiomyocytes and induced cardiomyocyte re-entry into the cell cycle, while retaining the previously demonstrated therapeutic efficacy of ADSC-derived exosomes to improve post-infarction cardiac function through anti-fibrotic, pro-angiogenic, and other effects.

Conclusions:

Our findings suggest that siRNA delivery via ADSC-derived exosomes may be a promising approach for the treatment of MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The datasets generated and analyzed during the present study are available from the corresponding author on reasonable request.

References

  1. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the gbd 2019 study. J Am Coll Cardiol. 2020;76:2982–3021.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sahoo S, Losordo DW. Exosomes and cardiac repair after myocardial infarction. Circ Res. 2014;114:333–44.

    Article  CAS  PubMed  Google Scholar 

  3. Wang J, Liu S, Heallen T, Martin JF. The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nat Rev Cardiol. 2018;15:672–84.

    Article  CAS  PubMed  Google Scholar 

  4. Del Re DP. The hippo signaling pathway: implications for heart regeneration and disease. Clin Transl Med. 2014;3:27.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zeng Q, Hong W. The emerging role of the hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell. 2008;13:188–92.

    Article  CAS  PubMed  Google Scholar 

  6. Xie J, Wang Y, Ai D, Yao L, Jiang H. The role of the Hippo pathway in heart disease. FEBS J. 2022;289:5819–33.

    Article  CAS  PubMed  Google Scholar 

  7. Harvey KF, Hariharan IK. The hippo pathway. Cold Spring Harb Perspect Biol. 2012;4: a011288.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Patel SH, Camargo FD, Yimlamai D. Hippo signaling in the liver regulates organ size, cell fate, and carcinogenesis. Gastroenterology. 2017;152:533–45.

    Article  CAS  PubMed  Google Scholar 

  9. Pan D. The hippo signaling pathway in development and cancer. Dev Cell. 2010;19:491–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Calses PC, Crawford JJ, Lill JR, Dey A. Hippo pathway in cancer: aberrant regulation and therapeutic opportunities. Trends Cancer. 2019;5:297–307.

    Article  CAS  PubMed  Google Scholar 

  11. Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL, et al. Hippo signaling impedes adult heart regeneration. Development. 2013;140:4683–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu S, Li K, Wagner Florencio L, Tang L, Heallen TR, Leach JP, et al. Gene therapy knockdown of Hippo signaling induces cardiomyocyte renewal in pigs after myocardial infarction. Sci Transl Med 2021;13:eabd6892.

  13. Setten RL, Rossi JJ, Han SP. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18:421–46.

    Article  CAS  PubMed  Google Scholar 

  14. Kim B, Park JH, Sailor MJ. Rekindling RNAi therapy: materials design requirements for in vivo siRNA delivery. Adv Mater. 2019;31: e1903637.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Revia RA, Stephen ZR, Zhang M. Theranostic nanoparticles for RNA-based cancer treatment. Acc Chem Res. 2019;52:1496–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen X, Mangala LS, Rodriguez-Aguayo C, Kong X, Lopez-Berestein G, Sood AK. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev. 2018;37:107–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ding Y, Zhang Y, Liu X. Combinational treatments of RNA interference and extracellular vesicles in the spinocerebellar ataxia. Front Mol Neurosci. 2022;15:1043947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ju Z, Ma J, Wang C, Yu J, Qiao Y, Hei F. Exosomes from iPSCs delivering siRNA attenuate intracellular adhesion molecule-1 expression and neutrophils adhesion in pulmonary microvascular endothelial cells. Inflammation. 2017;40:486–96.

    Article  CAS  PubMed  Google Scholar 

  19. Shtam TA, Kovalev RA, Varfolomeeva EY, Makarov EM, Kil YV, Filatov MV. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal. 2013;11:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hinderer C, Katz N, Buza EL, Dyer C, Goode T, Bell P, et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum Gene Ther. 2018;29:285–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020;367.

  22. Huang W, Qu M, Li L, Liu T, Lin M, Yu X. SiRNA in MSC-derived exosomes silences CTGF gene for locomotor recovery in spinal cord injury rats. Stem Cell Res Ther. 2021;12:334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–5.

    Article  CAS  PubMed  Google Scholar 

  24. Kimiz-Gebologlu I, Oncel SS. Exosomes: large-scale production, isolation, drug loading efficiency, and biodistribution and uptake. J Control Release. 2022;347:533–43.

    Article  CAS  PubMed  Google Scholar 

  25. Liang Y, Duan L, Lu J, Xia J. Engineering exosomes for targeted drug delivery. Theranostics. 2021;11:3183–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release. 2015;219:396–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tian M, Ticer T, Wang Q, Walker S, Pham A, Suh A, et al. Adipose-derived biogenic nanoparticles for suppression of inflammation. Small. 2020;16: e1904064.

    Article  PubMed  Google Scholar 

  28. Chang TH, Wu CS, Chiou SH, Chang CH, Liao HJ. Adipose-derived stem cell exosomes as a novel anti-inflammatory agent and the current therapeutic targets for rheumatoid arthritis. Biomedicines 2022;10:1725.

  29. Liu Z, Wang S, Tapeinos C, Torrieri G, Känkänen V, El-Sayed N, et al. Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Adv Drug Deliv Rev. 2021;174:576–612.

    Article  CAS  PubMed  Google Scholar 

  30. Deng S, Zhou X, Ge Z, Song Y, Wang H, Liu X, et al. Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization. Int J Biochem Cell Biol. 2019;114: 105564.

    Article  CAS  PubMed  Google Scholar 

  31. Liu Z, Xu Y, Wan Y, Gao J, Chu Y, Li J. Exosomes from adipose-derived mesenchymal stem cells prevent cardiomyocyte apoptosis induced by oxidative stress. Cell Death Discov. 2019;5:79.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mao C, Li D, Zhou E, Gao E, Zhang T, Sun S, et al. Extracellular vesicles from anoxia preconditioned mesenchymal stem cells alleviate myocardial ischemia/reperfusion injury. Aging (Albany NY). 2021;13:6156–70.

    Article  CAS  PubMed  Google Scholar 

  33. An YH, Kim DH, Lee EJ, Lee D, Park MJ, Ko J, et al. High-efficient production of adipose-derived stem cell (ADSC) secretome through maturation process and its non-scarring wound healing applications. Front Bioeng Biotechnol. 2021;9: 681501.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bai X, Yan Y, Song YH, Seidensticker M, Rabinovich B, Metzele R, et al. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eur Heart J. 2010;31:489–501.

    Article  CAS  PubMed  Google Scholar 

  35. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells the international society for cellular therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  36. Han M, Gu Y, Lu P, Li J, Cao H, Li X, et al. Exosome-mediated lncRNA AFAP1-AS1 promotes trastuzumab resistance through binding with AUF1 and activating ERBB2 translation. Mol Cancer. 2020;19:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Witwer KW, Goberdhan DC, O’Driscoll L, Thery C, Welsh JA, Blenkiron C, et al. Updating MISEV: evolving the minimal requirements for studies of extracellular vesicles. J Extracell Vesicles. 2021;10:e12182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang J, Wang Y, Duan Z, Hu W. Hypoxia-induced alterations of transcriptome and chromatin accessibility in HL-1 cells. IUBMB Life. 2020;72:1737–46.

    Article  CAS  PubMed  Google Scholar 

  39. Chen J, Huang ZP, Seok HY, Ding J, Kataoka M, Zhang Z, et al. mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res. 2013;112:1557–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao J, Li X, Hu J, Chen F, Qiao S, Sun X, et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res. 2019;115:1205–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rostamzadeh F, Shadkam-Farrokhi M, Jafarinejad-Farsangi S, Najafipour H, Ansari-Asl Z, Yeganeh-Hajahmadi M. PEGylated graphene quantum dot improved cardiac function in rats with myocardial infarction: morphological, oxidative stress, and toxicological evidences. Oxid Med Cell Longev. 2021;2021:8569225.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Germanova E, Khmil N, Pavlik L, Mikheeva I, Mironova G, Lukyanova L. The role of mitochondrial enzymes, succinate-coupled signaling pathways and mitochondrial ultrastructure in the formation of urgent adaptation to acute hypoxia in the myocardium. Int J Mol Sci. 2022;23:14248.

  43. Feng J, Zhan J, Ma S. LRG1 promotes hypoxia-induced cardiomyocyte apoptosis and autophagy by regulating hypoxia-inducible factor-1alpha. Bioengineered. 2021;12:8897–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu J, Jiang M, Deng S, Lu J, Huang H, Zhang Y, et al. miR-93-5p-containing exosomes treatment attenuates acute myocardial infarction-induced myocardial damage. Mol Ther Nucleic Acids. 2018;11:103–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li Y, Feng J, Song S, Li H, Yang H, Zhou B, et al. gp130 controls cardiomyocyte proliferation and heart regeneration. Circulation. 2020;142:967–82.

    Article  CAS  PubMed  Google Scholar 

  46. Wang Y, Li Y, Feng J, Liu W, Li Y, Liu J, et al. Mydgf promotes cardiomyocyte proliferation and Neonatal Heart regeneration. Theranostics. 2020;10:9100–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xin M, Kim Y, Sutherland LB, Murakami M, Qi X, McAnally J, et al. Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci U S A. 2013;110:13839–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L, et al. A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med. 2015;7:279ra38.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Meng F, Xie B, Martin JF. Targeting the Hippo pathway in heart repair. Cardiovasc Res. 2022;118:2402–14.

    Article  CAS  PubMed  Google Scholar 

  50. Mia MM, Singh MK. The hippo signaling pathway in cardiac development and diseases. Front Cell Dev Biol. 2019;7:211.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gao C, Wang Y. YAP: The nexus between metabolism and cardiac remodeling. J Clin Invest 2022;132:e157664.

  52. Chong SY, Lee CK, Huang C, Ou YH, Charles CJ, Richards AM, et al. Extracellular vesicles in cardiovascular diseases: alternative biomarker sources, therapeutic agents, and drug delivery xarriers. Int J Mol Sci 2019;20:3272.

  53. Rochette L, Mazini L, Malka G, Zeller M, Cottin Y, Vergely C. The crosstalk of adipose-derived stem cells (ADSC), oxidative stress, and inflammation in protective and adaptive responses. Int J Mol Sci 2020;21:9262.

  54. Castiglione F, Dewulf K, Hakim L, Weyne E, Montorsi F, Russo A, et al. Adipose-derived stem cells counteract urethral stricture formation in rats. Eur Urol. 2016;70:1032–41.

    Article  PubMed  Google Scholar 

  55. Mazini L, Rochette L, Amine M, Malka G. Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). Int J Mol Sci 2019;20:2523.

  56. Zhang X, Jiang Y, Huang Q, Wu Z, Pu H, Xu Z, et al. Exosomes derived from adipose-derived stem cells overexpressing glyoxalase-1 protect endothelial cells and enhance angiogenesis in type 2 diabetic mice with limb ischemia. Stem Cell Res Ther. 2021;12:403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu J, Yang Q, Wu S, Yuan R, Zhao X, Li Y, et al. Adipose-derived stem cell exosomes promoted hair regeneration. Tissue Eng Regen Med. 2021;18:685–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin J, Wang Z, Huang J, Tang S, Saiding Q, Zhu Q, et al. Microenvironment-protected exosome-hydrogel for facilitating endometrial regeneration, fertility restoration, and live birth of offspring. Small. 2021;17:e2007235.

    Article  PubMed  Google Scholar 

  59. Wang T, Li T, Niu X, Hu L, Cheng J, Guo D, et al. ADSC-derived exosomes attenuate myocardial infarction injury by promoting miR-205-mediated cardiac angiogenesis. Biol Direct. 2023;18:6.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Luo Q, Guo D, Liu G, Chen G, Hang M, Jin M. Exosomes from MiR-126-overexpressing Adscs are therapeutic in relieving acute myocardial ischaemic injury. Cell Physiol Biochem. 2017;44:2105–16.

    Article  CAS  PubMed  Google Scholar 

  61. Pan J, Alimujiang M, Chen Q, Shi H, Luo X. Exosomes derived from miR-146a-modified adipose-derived stem cells attenuate acute myocardial infarction-induced myocardial damage via downregulation of early growth response factor 1. J Cell Biochem. 2019;120:4433–43.

    Article  CAS  PubMed  Google Scholar 

  62. Wei Z, Chen Z, Zhao Y, Fan F, Xiong W, Song S, et al. Mononuclear phagocyte system blockade using extracellular vesicles modified with CD47 on membrane surface for myocardial infarction reperfusion injury treatment. Biomaterials. 2021;275:121000.

    Article  CAS  PubMed  Google Scholar 

  63. Wang X, Chen Y, Zhao Z, Meng Q, Yu Y, Sun J, et al. Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction. J Am Heart Assoc. 2018;7:e008737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen P, Wang L, Fan X, Ning X, Yu B, Ou C, et al. Targeted delivery of extracellular vesicles in heart injury. Theranostics. 2021;11:2263–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang P, Zhou Y, Richards AM. Effective tools for RNA-derived therapeutics: siRNA interference or miRNA mimicry. Theranostics. 2021;11:8771–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

WZB contributed the central idea, analysed most of the data, and wrote the initial draft of the paper. TCZ, JBZ, YL, XH and GL contributed to refining the ideas, carrying out additional analyses and finalizing this paper.

Corresponding authors

Correspondence to Xi Huang or Gang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Statement

All animal experiments were approved by the Animal Research Committee of the Fifth Affiliated Hospital of Sun Yat-sen University (No. 00243), in compliance with the “Guidelines for the Care and Use of Experimental Animals” of the National Institutes of Health (NIH Publication, 8th Edition, 2011). All donors were adults and signed an informed consent form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, W., Zhu, T., Zuo, J. et al. Delivery of SAV-siRNA via Exosomes from Adipose-Derived Stem Cells for the Treatment of Myocardial Infarction. Tissue Eng Regen Med 20, 1063–1077 (2023). https://doi.org/10.1007/s13770-023-00588-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-023-00588-z

Keywords

Navigation