Skip to main content
Log in

Applications of Bacterial Cellulose-Based Composite Materials in Hard Tissue Regenerative Medicine

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Cartilage, bone, and teeth, as the three primary hard tissues in the human body, have a significant application value in maintaining physical and mental health. Since the development of bacterial cellulose-based composite materials with excellent biomechanical strength and good biocompatibility, bacterial cellulose-based composites have been widely studied in hard tissue regenerative medicine. This paper provides an overview of the advantages of bacterial cellulose-based for hard tissue regeneration and reviews the recent progress in the preparation and research of bacterial cellulose-based composites in maxillofacial cartilage, dentistry, and bone.

Method:

A systematic review was performed by searching the PubMed and Web of Science databases using selected keywords and Medical Subject Headings search terms.

Results:

Ideal hard tissue regenerative medicine materials should be biocompatible, biodegradable, non-toxic, easy to use, and not burdensome to the human body; In addition, they should have good plasticity and processability and can be prepared into materials of different shapes; In addition, it should have good biological activity, promoting cell proliferation and regeneration. Bacterial cellulose materials have corresponding advantages and disadvantages due to their inherent properties. However, after being combined with other materials (natural/ synthetic materials) to form composite materials, they basically meet the requirements of hard tissue regenerative medicine materials. We believe that it is worth being widely promoted in clinical applications in the future.

Conclusion:

Bacterial cellulose-based composites hold great promise for clinical applications in hard tissue engineering. However, there are still several challenges that need to be addressed. Further research is needed to incorporate multiple disciplines and advance biological tissue engineering techniques. By enhancing the adhesion of materials to osteoblasts, providing cell stress stimulation through materials, and introducing controlled release systems into matrix materials, the practical application of bacterial cellulose-based composites in clinical settings will become more feasible in the near future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hu D, Ren Q, Li ZC, Zhang LL. Chitosan-based biomimetically mineralized composite materials in human hard tissue repair. Molecules. 2020;25:4758.

    Article  Google Scholar 

  2. Sarkar SK, Lee BT. Hard tissue regeneration using bone substitutes: an update on innovations in materials. Korean J Intern Med. 2015;30:279–93.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jordana F, Le Visage C, Weiss P. Substituts osseux. Med Sci (Paris). 2017;33:60–5.

    Article  PubMed  Google Scholar 

  4. Zhang HL, Zhou YL, Yu N, Ma HR, Wang KR, Liu JS, et al. Construction of vascularized tissue-engineered bone with polylysine-modified coral hydroxyapatite and a double cell-sheet complex to repair a large radius bone defect in rabbits. Acta Biomater. 2019;91:82–98.

    Article  CAS  PubMed  Google Scholar 

  5. Deng JP, Song Q, Liu SY, Pei WH, Wang P, Zheng LM, et al. Advanced applications of cellulose-based composites in fighting bone diseases. Compos B Eng. 2022;245:110221.

    Article  CAS  Google Scholar 

  6. Stumpf TR, Yang XY, Zhang JC, Cao XD. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018;82:372–83.

    Article  CAS  PubMed  Google Scholar 

  7. Saltzman WM. Controlled drug delivery systems. In: Drug delivery. Oxford University Press; 2001. p. 235–80.

    Chapter  Google Scholar 

  8. Biomimetic Materials. In: Tissue Engineering. CRC Press, 2007. p. 165–72.

  9. Peng ZL, Zhao TS, Zhou YQ, Li SH, Li JJ, Leblanc RM. Bone tissue engineering via carbon-based nanomaterials. Adv Healthcare Mater. 2020;9:1901495.

    Article  CAS  Google Scholar 

  10. Bhattacharjee P, Kundu B, Naskar D, Kim HW, Maiti TK, Bhattacharya D, et al. Silk scaffolds in bone tissue engineering: an overview. Acta Biomater. 2017;63:1–17.

    Article  CAS  PubMed  Google Scholar 

  11. Khan S, Ul-Islam M, Ullah MW, Zhu YL, Narayanan KB, Han SS, et al. Fabrication strategies and biomedical applications of three-dimensional bacterial cellulose-based scaffolds: a review. Int J Biol Macromol. 2022;209:9–30.

    Article  CAS  PubMed  Google Scholar 

  12. Cohen IR, Lajtha A, Lambris JD, Paoletti R, Rezaei N. Biomimetic medical materials: from nanotechnology to 3D bioprinting. Noh I, editors. Adv Exp Med Biol. 2018;1064:1–399.

  13. Andrade FK, Morais JPS, Muniz CR, Nascimento JHO, Vieira RS, Gama FMP, et al. Stable microfluidized bacterial cellulose suspension. Cellulose. 2019;26:5851–64.

    Article  CAS  Google Scholar 

  14. Pu Y, Jiang H, Zhang Y, Cao J, Jiang W. Advances in propolis and propolis functionalized coatings and films for fruits and vegetables preservation. Food Chem. 2023;414:135662.

    Article  CAS  PubMed  Google Scholar 

  15. Gorgieva S, Trček J. Bacterial cellulose: production, modification and perspectives in biomedical applications. Nanomaterials. 2019;9:1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Monteiro AS, De Oliveira M, Santagneli S, Carcel C, Gutmann T, Buntkowsky G, et al. Modification of bacterial cellulose membrane with 1,4-bis(triethoxysilyl)benzene: a thorough physical-chemical characterization study. J Phys Chem C. 2021;125:4498–508.

    Article  CAS  Google Scholar 

  17. Wang J, Zhu Y, Du J. Bacterial cellulose: a natural nanomaterial for biomedical applications. J Mech Med Biol. 2011;11:285–306.

    Article  Google Scholar 

  18. Ullah H, Santos HA, Khan T. Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose. 2016;23:2291–314.

    Article  CAS  Google Scholar 

  19. Pandit A, Kumar R. A review on production, characterization and application of bacterial cellulose and its biocomposites. J Polym Environ. 2021;29:2738–55.

    Article  CAS  Google Scholar 

  20. Deng J, Song Q, Liu S, Pei W, Wang P, Zheng L, et al. Advanced applications of cellulose-based composites in fighting bone diseases. Compos Pt B-Eng. 2022;245:110221.

    Article  CAS  Google Scholar 

  21. Bujoli B, Scimeca JC, Verron E. Fibrin as a multipurpose physiological platform for bone tissue engineering and targeted delivery of bioactive compounds. Pharmaceutics. 2019;11:556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jung K, Corrigan N, Wong EHH, Boyer C. Bioactive synthetic polymers. Adv Mater. 2022;34:2105063.

    Article  CAS  Google Scholar 

  23. Wu Y, Wang Y, Wang F, Huang Y, He J. Preparation of 3D printed polylactic acid/bacterial cellulose composite scaffold for tissue engineering applications. Polymers. 2022;14:4756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang H, Wang J, Wang K, Xu L. A bilayered PLGA/multiwall carbon nanotubes/bacterial cellulose composite membrane for tissue regeneration of maxillary canine periodontal bone defects. Mater Lett. 2018;212:118–21.

    Article  CAS  Google Scholar 

  25. Codreanu A, Balta C, Herman H, Cotoraci C, Mihali CV, Zurbau N, et al. Bacterial cellulose-modified polyhydroxyalkanoates scaffolds promotes bone formation in critical size calvarial defects in mice. Materials. 2020;13:1433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aki D, Ulag S, Unal S, Sengor M, Ekren N, Lin CC, et al. 3D printing of PVA/hexagonal boron nitride/bacterial cellulose composite scaffolds for bone tissue engineering. Mater Des. 2020;196:109094.

    Article  CAS  Google Scholar 

  27. Christy PN, Basha SK, Kumari VS. Multifunctional organic and inorganic hybrid bionanocomposite of chitosan/poly(vinyl alcohol)/nanobioactive glass/nanocellulose for bone tissue engineering. J Mech Behav Biomed Mater. 2022;135:105427.

    Article  Google Scholar 

  28. Cakmak AM, Unal S, Sahin A, Oktar FN, Sengor M, Ekren N, et al. 3D Printed polycaprolactone/gelatin/bacterial cellulose/hydroxyapatite composite scaffold for bone tissue engineering. Polymers. 2020;12:1962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yuan N, Xu L, Zhang L, Ye H, Zhao J, et al. Superior hybrid hydrogels of polyacrylamide enhanced by bacterial cellulose nanofiber clusters. Mater Sci Eng C Mater Biol Appl. 2016;67:221–30.

    Article  CAS  PubMed  Google Scholar 

  30. Jabbari E. Challenges for natural hydrogels in tissue engineering. Gels. 2019;5:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Balakrishnan B, Banerjee R. Biopolymer-based hydrogels for cartilage tissue engineering. Chem Rev. 2011;111:4453–74.

    Article  CAS  PubMed  Google Scholar 

  32. Grande DA, Halberstadt C, Naughton G, Schwartz R, Manji R. Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J Biomed Mater Res. 1997;34:211–20.

    Article  CAS  PubMed  Google Scholar 

  33. León-López A, Morales-Peñaloza A, Martínez-Juárez VM, Vargas-Torres A, Zeugolis DI, Aguirre-Álvarez G. Hydrolyzed collagen—sources and applications. Molecules. 2019;24:4031.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Reakasame S, Boccaccini AR. Oxidized alginate-based hydrogels for tissue engineering applications: a review. Biomacromolecules. 2018;19:3–21.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang W, Wang XC, Li XY, Zhang LL, Jiang F. A 3D porous microsphere with multistage structure and component based on bacterial cellulose and collagen for bone tissue engineering. Carbohydr Polym. 2020;236:116043.

    Article  CAS  PubMed  Google Scholar 

  36. Saska S, Teixeira LN, Raucci LMSdC, Scarel-Caminaga RM, Santos RAD, Santagneli SH, et al. Nanocellulose-collagen-apatite composite associated with osteogenic growth peptide bone regeneration. Int J Biol Macromol. 2017;103:467–76.

    Article  CAS  PubMed  Google Scholar 

  37. Noh YK, Costa ADSD, Park YS, Du P, Kim IH, Park K. Fabrication of bacterial cellulose-collagen composite scaffolds and their osteogenic effect on human mesenchymal stem cells. Carbohydr Polym. 2019;219:210–8.

    Article  CAS  PubMed  Google Scholar 

  38. Yang M, Zhen WJ, Chen H, Shan Z. Biomimetic design of oxidized bacterial cellulose-gelatin-hydroxyapatite nanocomposites. J Bionic Eng. 2016;13:631–40.

    Article  Google Scholar 

  39. Wang X, Tang S, Chai S, Wang P, Qin J, Pei W, et al. Preparing printable bacterial cellulose based gelatin gel to promote in vivo bone regeneration. Carbohydr Polym. 2021;270:118342.

    Article  CAS  PubMed  Google Scholar 

  40. Zhijiang C, Ping X, Siqhi H, Cong Z. Soy protein nanoparticles modified bacterial cellulose electrospun nanofiber membrane scaffold by ultrasound-induced self-assembly technique: characterization and cytocompatibility. Cellulose. 2019;26:6133–50.

    Article  Google Scholar 

  41. Klinthoopthamrong N, Chaikiawkeaw D, Phoolcharoen W, Rattanapisit K, Kaewpungsup P, Pavasant P, et al. Bacterial cellulose membrane conjugated with plant-derived osteopontin: Preparation and its potential for bone tissue regeneration. Int J Biol Macromol. 2020;149:51–9.

    Article  CAS  PubMed  Google Scholar 

  42. Jiang P, Ran J, Yan P, Zheng L, Shen X, Tong H. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase. J Biomater Sci Polym Ed. 2018;29:107–24.

    Article  CAS  PubMed  Google Scholar 

  43. Choi Y, Cho SY, Heo S, Jin HJ. Enhanced mechanical properties of silk fibroin-based composite plates for fractured bone healing. Fibers Polym. 2013;14:266–70.

    Article  Google Scholar 

  44. Barud HGO, Barud HS, Cavicchioli M, Amaral TS, de Oliveira Junior OB, Santos DM, et al. Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym. 2015;128:41–51.

    Article  PubMed  Google Scholar 

  45. Chen J, Zhuang A, Shao H, Hu X, Zhang Y. Robust silk fibroin/bacterial cellulose nanoribbon composite scaffolds with radial lamellae and intercalation structure for bone regeneration. J Mat Chem B. 2017;5:3640–50.

    Article  CAS  Google Scholar 

  46. Lee JM, Kim JH, Lee OJ, Park CH. The fixation effect of a silk fibroin-bacterial cellulose composite plate in segmental defects of the zygomatic arch. JAMA Otolaryngol Head Neck Surg. 2013;139:629–35.

    Article  PubMed  Google Scholar 

  47. Yuan Q, Li L, Peng Y, Zhuang A, Wei W, Zhang D, et al. Biomimetic nanofibrous hybrid hydrogel membranes with sustained growth factor release for guided bone regeneration. Biomater Sci. 2021;9:1256–71.

    Article  CAS  PubMed  Google Scholar 

  48. Zhu Q, Chen X, Liu Z, Li Z, Li D, Lin Q. Development of alginate-chitosan composite scaffold incorporation of bacterial cellulose for bone tissue engineering. Int J Polym Mater Polym Biomater. 2021;72:296–307.

    Article  Google Scholar 

  49. Yan H, Chen X, Feng M, Shi Z, Zhang D, Lin Q. Layer-by-layer assembly of 3D alginate-chitosan-gelatin composite scaffold incorporating bacterial cellulose nanocrystals for bone tissue engineering. Mater Lett. 2017;209:492–6.

    Article  CAS  Google Scholar 

  50. Li Z, Chen X, Bao C, Liu C, Liu C, Li D, et al. Fabrication and evaluation of alginate/bacterial cellulose nanocrystals-chitosan-gelatin composite scaffolds. Molecules. 2021;26:5003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cao S, Li Q, Zhang S, Liu K, Yang Y, Chen J. Oxidized bacterial cellulose reinforced nanocomposite scaffolds for bone repair. Colloid Surf B Biointerfaces. 2022;211:112316.

    Article  CAS  PubMed  Google Scholar 

  52. Hong H, Fan H, Chalamaiah M, Wu J. Preparation of low-molecular-weight, collagen hydrolysates (peptides): current progress, challenges, and future perspectives. Food Chem. 2019;301:125222.

    Article  CAS  PubMed  Google Scholar 

  53. Lee SH, Lim YM, Jeong SI, An SJ, Kang SS, Jeong CM, et al. The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration. J Adv Prosthodont. 2015;7:484–95.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rodríguez-Rodríguez R, Espinosa-Andrews H, Velasquillo-Martínez C, García-Carvajal ZY. Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review. Int J Polym Mater Polym Biomater. 2020;69:1–20.

    Article  Google Scholar 

  55. Neffe AT, Loebus A, Zaupa A, Stoetzel C, Müller FA, Lendlein A. Gelatin functionalization with tyrosine derived moieties to increase the interaction with hydroxyapatite fillers. Acta Biomater. 2011;7:1693–701.

    Article  CAS  PubMed  Google Scholar 

  56. Shi P, Sun H, Zhang H, Li S, Liang S, Lv Y, et al. Highly effective antibacterial properties of self-formed Ag nanoparticles/Zr-Ag granular films. Appl Surf Sci. 2023;622:156929.

    Article  CAS  Google Scholar 

  57. Zhu Y, Yang Q, Yang M, Zhan X, Lan F, He J, et al. Protein corona of magnetic hydroxyapatite scaffold improves cell proliferation via activation of mitogen-activated protein kinase signaling pathway. ACS Nano. 2017;11:3690–704.

    Article  CAS  PubMed  Google Scholar 

  58. Chen WS, Guo LY, Masroujeh AM, Augustine AM, Tsai CK, Chin TY, et al. A single-step surface modification of electrospun silica nanofibers using a silica binding protein fused with an RGD motif for enhanced PC12 cell growth and differentiation. Materials (Basel). 2018;11:927.

    Article  PubMed  Google Scholar 

  59. Wang X, Mao J, Chen Y, Song D, Gao Z, Zhang X, et al. Design of antibacterial biointerfaces by surface modification of poly (ε-caprolactone) with fusion protein containing hydrophobin and PA-1. Colloids Surf B Biointerfaces. 2017;151:255–63.

    Article  CAS  Google Scholar 

  60. Kong XD, Cui FZ, Wang XM, Zhang M, Zhang W. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. J Cryst Growth. 2004;270:197–202.

    Article  CAS  Google Scholar 

  61. Li MC, Wu Q, Song K, Lee S, Jin C, Ren S, et al. Soy protein isolate as fluid loss additive in bentonite–water-based drilling fluids. ACS Appl Mater Interfaces. 2015;7:24799–809.

    Article  CAS  PubMed  Google Scholar 

  62. De Angelis E, Pilolli R, Bavaro SL, Monaci L. Insight into the gastro-duodenal digestion resistance of soybean proteins and potential implications for residual immunogenicity. Food Funct. 2017;8:1599–610.

    Article  PubMed  Google Scholar 

  63. Martin SM, Ganapathy R, Kim TK, Leach-Scampavia D, Giachelli CM, Ratner BD. Characterization and analysis of osteopontin-immobilized poly(2-hydroxyethyl methacrylate) surfaces. J Biomed Mater Res A. 2003;67:334–43.

    Article  PubMed  Google Scholar 

  64. Hao C, Cui Y, Owen S, Li W, Cheng S, Jiang WG. Human osteopontin: potential clinical applications in cancer (review). Int J Mol Med. 2017;39:1327–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rattanapisit K, Abdulheem S, Chaikeawkaew D, Kubera A, Mason HS, Ma JK-C, et al. Recombinant human osteopontin expressed in Nicotiana benthamiana stimulates osteogenesis related genes in human periodontal ligament cells. Sci Rep. 2017;7:17358.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Phatchayawat PP, Khamkeaw A, Yodmuang S, Phisalaphong M. 3D bacterial cellulose-chitosan-alginate-gelatin hydrogel scaffold for cartilage tissue engineering. Biochem Eng J. 2022;184:108476.

    Article  CAS  Google Scholar 

  67. Lee J, Lee KY. Local and sustained vascular endothelial growth factor delivery for angiogenesis using an injectable system. Pharm Res. 2009;26:1739–44.

    Article  CAS  PubMed  Google Scholar 

  68. Nishimura K, Nishimura S, Nishi N, Tokura S, Azuma I. Immunological activity of chitin derivatives. Vaccine. 1984;2:93–9.

  69. Bagher Z, Ehterami A, Safdel MH, Khastar H, Semiari H, Asefnejad A, et al. Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model. J Drug Deliv Sci Technol. 2020;55:101379.

    Article  CAS  Google Scholar 

  70. Yuan H, Chen L, Hong FF. A biodegradable antibacterial nanocomposite based on oxidized bacterial nanocellulose for rapid hemostasis and wound healing. ACS Appl Mater Interfaces. 2020;12:3382–92.

    Article  CAS  PubMed  Google Scholar 

  71. Wang J, Yang C, Wan Y, Luo H, Fang H, Kerong D, et al. Laser patterning of bacterial cellulose hydrogel and its modification with gelatin and hydroxyapatite for bone tissue engineering. Soft Mater. 2013;11:173–80.

    Article  CAS  Google Scholar 

  72. Janmohammadi M, Nazemi Z, Salehi AOM, Seyfoori A, John JV, Nourbakhsh MS, et al. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact Mater. 2022;20:137–63.

    Article  CAS  Google Scholar 

  73. Feldmann EM, Sundberg J, Bobbili B, Schwarz S, Gatenholm P, Rotter N. Description of a novel approach to engineer cartilage with porous bacterial nanocellulose for reconstruction of a human auricle. J Biomater Appl. 2013;28:626–40.

    Article  CAS  PubMed  Google Scholar 

  74. Bartlett W, Skinner JA, Gooding CR, Carrington R, et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br. 2005;87:640–5.

    Article  Google Scholar 

  75. Bichara DA, O’Sullivan NA, Pomerantseva I, Zhao X, Sundback CA, Vacanti JP, et al. The tissue-engineered auricle: past, present, and future. Tissue Eng Part B Rev. 2012;18:51–61.

    Article  CAS  PubMed  Google Scholar 

  76. Cenzi R, Farina A, Zuccarino L, Carinci F. Clinical outcome of 285 medpor grafts used for craniofacial reconstruction. J Craniofac Surg. 2005;16:526–30.

    Article  PubMed  Google Scholar 

  77. Martínez Ávila H, Schwarz S, Feldmann EM, Mantas A, von Bomhard A, Gatenholm P, et al. 4Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl Microbiol Biotechnol. 2014;98:7423–35.

    Article  PubMed  Google Scholar 

  78. Mow VC, Guo XE. Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu Rev Biomed Eng. 2002;4:175–209.

    Article  CAS  PubMed  Google Scholar 

  79. Nimeskern L, Martínez Ávila H, Sundberg J, Gatenholm P, Müller R, Stok KS. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater. 2013;22:12–21.

    Article  CAS  PubMed  Google Scholar 

  80. Martínez Ávila H, Feldmann EM, Pleumeekers MM, Nimeskern L, Kuo W, de Jong WC, et al. Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Biomaterials. 2015;44:122–33.

    Article  PubMed  Google Scholar 

  81. Martinez Neto EE, Dolci JEL. Fechamento de perfuração septal nasal em coelhos com celulose bacteriana. Braz J Otorhinolaryngol. 2010;76:442–9.

    Article  PubMed  Google Scholar 

  82. Sang S, Ma Z, Cao Y, Shen Z, Duan J, Zhang Y, et al. BC enhanced photocurable hydrogel based on 3D bioprinting for nasal cartilage repair. Int J Polym Mater Polym Biomater. 2023;72:702–13.

    Article  CAS  Google Scholar 

  83. Reinholt FP, Hultenby K, Oldberg A, Heinegård D. Osteopontin: a possible anchor of osteoclasts to bone. Proc Natl Acad Sci U S A. 1990;87:4473–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang B, Xiao M, Cheng X, Bai Y, Chen H, Yu C, et al. Enamel matrix derivative enhances the odontoblastic differentiation of dental pulp stem cells via activating MAPK signaling pathways. Stem Cells Int. 2022;2022:2236250.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Huang GTJ. Dental pulp and dentin tissue engineering and regeneration advancement and challenge. Front Biosci. 2011;3:788–800.

    Article  CAS  Google Scholar 

  86. Gong T, Heng BC, Lo ECM, Zhang C. Current advance and future prospects of tissue engineering approach to dentin/pulp regenerative therapy. Stem Cells Int. 2016;2016:9204574.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cañas-Gutiérrez A, Osorio M, Molina-Ramírez C, Arboleda-Toro D, Castro-Herazo C. Bacterial cellulose: a biomaterial with high potential in dental and oral applications. Cellulose. 2020;27:9737–54.

    Article  Google Scholar 

  88. De Oliveira Barud HG, Da Silva RR, Da Silva BH, Tercjak A, Gutierrez J, Lustri WR, et al. A multipurpose natural and renewable polymer in medical applications: bacterial cellulose. Carbohydr Polym. 2016;153:406–20.

    Article  PubMed  Google Scholar 

  89. Bäckdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P. Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med. 2008;2:320–30.

    Article  PubMed  Google Scholar 

  90. Sopyan I, Mel M, Ramesh S, Khalid KA. Porous hydroxyapatite for artificial bone applications. Sci Technol Adv Mater. 2007;8:116–23.

    Article  CAS  Google Scholar 

  91. Kattimani VS, Kondaka S, Lingamaneni KP. Hydroxyapatite: past, present, and future in bone regeneration. Bone Tissue Regener Insights. 2016;7:BTRI.S36138.

    Article  Google Scholar 

  92. Remya NS, Syama S, Sabareeswaran A, Mohanan PV. Investigation of chronic toxicity of hydroxyapatite nanoparticles administered orally for one year in wistar rats. Mater Sci Mater Biol Appl. 2017;76:518–27.

    Article  CAS  Google Scholar 

  93. Costa LMM, de Olyveira GM, Basmaji P, Valido D. Novel otoliths/bacterial cellulose nanocomposites as a potential natural product for direct dental pulp capping. J Biomater Tissue Eng. 2012;2:48–53.

    Article  CAS  Google Scholar 

  94. de Olyveira GM, Valido DP, Costa LMM, Gois PBP, Filho LX, Basmaji P. First otoliths/collagen/bacterial cellulose nanocomposites as a potential scaffold for bone tissue regeneration. J Biomater Nanobiotechnol. 2011;2:239–43.

    Article  Google Scholar 

  95. Olyveira GM, Acasigua GAX, Costa LMM, Scher CR, Filho LX, Pranke PHL, et al. Human dental pulp stem cell behavior using natural nanotolith/bacterial cellulose scaffolds for regenerative medicine. J Biomed Nanotechnol. 2013;9:1370–7.

    Article  CAS  PubMed  Google Scholar 

  96. Acasigua GAX, de Olyveira GM, Costa LMM, Braghirolli DI, Fossati ACM, Guastaldi AC, et al. Novel chemically modified bacterial cellulose nanocomposite as potential biomaterial for stem cell therapy applications. Curr Stem Cell Res Ther. 2014;9:117–23.

    Article  CAS  Google Scholar 

  97. Raju R, Oshima M, Inoue M, Morita T, Yan H, Waskitho A, et al. Three-dimensional periodontal tissue regeneration using a bone-ligament complex cell sheet. Sci Rep. 2020;10:1656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Park CH. Biomaterial-based approaches for regeneration of periodontal ligament and cementum using 3D platforms. Int J Mol Sci. 2019;20:4364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Frencken JE, Sharma P, Stenhouse L, Green D, Laverty D, Dietrich T. Global epidemiology of dental caries and severe periodontitis: a comprehensive review. J Clin Periodontol. 2017;44:S94–105.

    Article  PubMed  Google Scholar 

  100. Kassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJL, Marcenes W. Global burden of severe Periodontitis in 1990–2010: a systematic review and Meta- regression. J Dent Res. 2014;93:1045–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shin YM, Yang HS, Chun HJ. Directional cell migration guide for improved tissue regeneration. In: Chun HJ, Reis RL, Motta A, Khang G, editors. Bioinspired biomaterials. Singapore: Springer; 2020. p. 131–40.

    Chapter  Google Scholar 

  102. Abdelaziz D, Hefnawy A, Al-Wakeel E, El-Fallal A, El-Sherbiny IM. New biodegradable nanoparticles-in-nanofibers based membranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity. J Adv Res. 2020;28:51–62.

    Article  CAS  PubMed  Google Scholar 

  103. Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Huang Q, Huang X, Gu L. Periodontal bifunctional biomaterials: progress and perspectives. Materials. 2021;14:7588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Klemm D, Schumann D, Udhardt U, Marsch S. Bacterial synthesized cellulose — artificial blood vessels for microsurgery. Prog Polym Sci. 2001;26:1561–603.

    Article  CAS  Google Scholar 

  106. Luz EPCG, Das Chagas BS, De Almeida NT, De Fátima Borges M, Andrade FK, Muniz CR, et al. Resorbable bacterial cellulose membranes with strontium release for guided bone regeneration. Mater Sci Eng C Mater Biol Appl. 2020;116:111175.

    Article  CAS  PubMed  Google Scholar 

  107. Gorgieva S, Hribernik S. Microstructured and degradable bacterial cellulose-gelatin composite membranes: mineralization aspects and biomedical relevance. Nanomaterials. 2019;9:303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Czaja W, Kyryliouk D, DePaula CA, Buechter DD. Oxidation of γ-irradiated microbial cellulose results in bioresorbable, highly conformable biomaterial. J Appl Polym Sci. 2014;131:39995.

    Article  Google Scholar 

  109. Kim SM, Fan H, Cho YJ, et al. Electron beam effect on biomaterials I: focusing on bone graft materials. Biomater Res. 2015;19:10.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Lee SH, An SJ, Lim YM, Huh JB. The efficacy of electron beam irradiated bacterial cellulose membranes as compared with collagen membranes on guided bone regeneration in peri-implant bone defects. Materials. 2017;10:1018.

    Article  PubMed  PubMed Central  Google Scholar 

  111. An SJ, Lee SH, Huh JB, Jeong SI, Park JS, Gwon HJ, et al. Preparation and characterization of resorbable bacterial cellulose membranes treated by electron beam irradiation for guided bone regeneration. Int J Mol Sci. 2017;18:2236.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zhang H, Chen Z. Fabrication and characterization of electrospun PLGA/MWNTs/hydroxyapatite biocomposite scaffolds for bone tissue engineering. J Bioact Compat Polym. 2010;25:241–59.

    Article  Google Scholar 

  113. Zhang H, Wang J, Wang K, Xu L. A bilayered PLGA/multiwall carbon nanotubes/bacterial cellulose composite membrane for tissue regeneration of maxillary canine periodontal bone defects. Mater Lett. 2018;212:118–21.

    Article  CAS  Google Scholar 

  114. Schneider RK, Puellen A, Kramann R, Raupach K, Bornemann J, Knuechel R, et al. The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds. Biomaterials. 2010;31:467–80.

    Article  CAS  PubMed  Google Scholar 

  115. Saska S, Pigossi SC, Oliveira GJPL, Teixeira LN, Capela MV, Gonçalves A, et al. Biopolymer-based membranes associated with osteogenic growth peptide for guided bone regeneration. Biomed Mater. 2018;13:035009.

    Article  PubMed  Google Scholar 

  116. Koike T, Sha JJ, Bai YP, Matsuda YH, Hideshima K, Yamada T, et al. Efficacy of bacterial cellulose as a carrier of BMP-2 for bone regeneration in a rabbit frontal sinus model. Materials. 2019;12:2489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yang X, Huang J, Chen C, Zhou L, Ren H, Sun D. Biomimetic design of double-sided functionalized silver nanoparticle/bacterial cellulose/hydroxyapatite hydrogel mesh for temporary cranioplasty. ACS Appl Mater Interfaces. 2023;15:10506–19.

    Article  CAS  PubMed  Google Scholar 

  118. Bokhari N, Fatima T, Nosheen S, Iqbal F, Moeen F, Sharif F. Bioactive bacterial cellulose–chitosan composite scaffolds for prospective periodontal tissue regeneration. J Mater Res. 2023;38:1952–62.

    Article  CAS  Google Scholar 

  119. Dutta SD, Patel DK, Lim KT. Functional cellulose-based hydrogels as extracellular matrices for tissue engineering. J Biol Eng. 2019;13:55.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by Science and Technology Innovation Leader and Key Talent Team Project of Shanxi Province (202204051002034), Key Research and Development Plan of Shanxi Province (202102130501002), Scientific Research Project for Returned Overseas Professionals of Shanxi Province (2022-120), Key national science and technology cooperation project of Shanxi Provincial Department of Science and Technology (202204041101004) and the Shanxi Province Basic Research Program (free exploration) Project (20210302124085); Programs of Higher Education Institutions in Shanxi (2020L0212).

Author information

Authors and Affiliations

Authors

Contributions

YL designed the structure and content,assembled the literature and wrote this review. HL, SG, JQ, RZ, XL, HC, LS, MZ, XW and BL provided suggestions and revised this review.

Corresponding authors

Correspondence to Xiuping Wu or Bing Li.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, H., Guo, S. et al. Applications of Bacterial Cellulose-Based Composite Materials in Hard Tissue Regenerative Medicine. Tissue Eng Regen Med 20, 1017–1039 (2023). https://doi.org/10.1007/s13770-023-00575-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-023-00575-4

Keywords

Navigation