Skip to main content
Log in

Three-Dimensional Cell Culture System for Tendon Tissue Engineering

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

A Correction to this article was published on 28 July 2023

This article has been updated

Abstract

Tendon, connective tissue between bone and muscle has unique component of the musculoskeletal system. It plays important role for transporting mechanical stress from muscle to bone and enabling locomotive motion of the body. There are some restoration capacities in the tendon tissue, but the injured tendons are not completely regenerated after acute and chronic tendon injury. At this point, the treatment options for tendon injuries are limited and not that successful. Therefore, biomedical engineering approaches are emerged to cope with this issue. Among them, three-dimensional cell culture platforms provided similarity to in vivo conditions and suggested opportunities for new therapeutic approaches for treatment of tendon injuries. In this review, we focus on the characteristics of tendon tissue and tendon pathologies which can be targets for tendon tissue engineering strategies. Then proof-of-concept and pre-clinical studies leveraging advanced 3-dimensional cell culture platforms for tendon tissue regeneration have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Nourissat G, Berenbaum F, Duprez D. Tendon injury: from biology to tendon repair. Nat Rev Rheumatol. 2015;11:223–33.

    PubMed  Google Scholar 

  2. James R, Kesturu G, Balian G, Chhabra AB. Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg Am. 2008;33:102–12.

    PubMed  Google Scholar 

  3. Docheva D, Muller SA, Majewski M, Evans CH. Biologics for tendon repair. Adv Drug Deliv Rev. 2015;84:222–39.

    CAS  PubMed  Google Scholar 

  4. Voleti PB, Buckley MR, Soslowsky LJ. Tendon healing: repair and regeneration. Annu Rev Biomed Eng. 2012;14:47–71.

    CAS  PubMed  Google Scholar 

  5. Kaux JF, Forthomme B, Goff CL, Crielaard JM, Croisier JL. Current opinions on tendinopathy. J Sports Sci Med. 2011;10:238–53.

    PubMed  PubMed Central  Google Scholar 

  6. Millar NL, Silbernagel KG, Thorborg K, Kirwan PD, Galatz LM, Abrams GD, et al. Tendinopathy. Nat Rev Dis Primers. 2021;7:1–21.

    PubMed  Google Scholar 

  7. Kraemer R, Wuerfel W, Lorenzen J, Busche M, Vogt PM, Knobloch K. Analysis of hereditary and medical risk factors in Achilles tendinopathy and Achilles tendon ruptures: a matched pair analysis. Arch Orthop Trauma Surg. 2012;132:847–53.

    PubMed  Google Scholar 

  8. Deren ME, Klinge SA, Mukand NH, Mukand JA. Tendinopathy and tendon rupture associated with statins. JBJS Reviews. 2016;4:e4.

    PubMed  Google Scholar 

  9. Chen JL, Zhang W, Liu ZY, Zhu T, Shen WL, Ran JS, et al. Characterization and comparison of post-natal rat Achilles tendon-derived stem cells at different development stages. Sci Rep. 2016;6:1–11.

    Google Scholar 

  10. Kane SF, Olewinski LH, Tamminga KS. Management of Chronic Tendon Injuries. Am Fam Physician. 2019;100:147–57.

    PubMed  Google Scholar 

  11. Rees JD, Wilson AM, Wolman RL. Current concepts in the management of tendon disorders. Rheumatol Oxf. 2006;45:508–21.

    CAS  Google Scholar 

  12. Kia C, Baldino J, Bell R, Ramji A, Uyeki C, Mazzocca A. Platelet-rich plasma: review of current literature on its use for tendon and ligament pathology. Curr Rev Musculoskelet Med. 2018;11:566–72.

    PubMed  PubMed Central  Google Scholar 

  13. Filardo G, Di Matteo B, Kon E, Merli G, Marcacci M. Platelet-rich plasma in tendon-related disorders: results and indications. Knee Surg Sports Traumatol Arthrosc. 2018;26:1984–99.

    PubMed  Google Scholar 

  14. Koeke PU, Parizotto NA, Carrinho PM, Salate AC. Comparative study of the efficacy of the topical application of hydrocortisone, therapeutic ultrasound and phonophoresis on the tissue repair process in rat tendons. Ultrasound Med Biol. 2005;31:345–50.

    PubMed  Google Scholar 

  15. Fillipin LI, Mauriz JL, Vedovelli K, Moreira AJ, Zettler CG, Lech O, et al. Low-level laser therapy (LLLT) prevents oxidative stress and reduces fibrosis in rat traumatized Achilles tendon. Lasers Surg Med. 2005;37:293–300.

    PubMed  Google Scholar 

  16. Neves MA, Pinfildi CE, Wood VT, Gobbato RC, da Silva FM, Parizotto NA, et al. Different power settings of LLLT on the repair of the calcaneal tendon. Photomed Laser Surg. 2011;29:663–8.

    CAS  PubMed  Google Scholar 

  17. Guerra FD, Vieira CP, Almeida MS, Oliveira LP, de Aro AA, Pimentel ER. LLLT improves tendon healing through increase of MMP activity and collagen synthesis. Lasers Med Sci. 2013;28:1281–8.

    PubMed  Google Scholar 

  18. Wang D, Zhang X, Huang S, Liu Y, Fu BS, Mak KK, et al. Engineering multi-tissue units for regenerative Medicine: Bone-tendon-muscle units of the rotator cuff. Biomaterials. 2021;272:120789.

    CAS  PubMed  Google Scholar 

  19. Lim WL, Liau LL, Ng MH, Chowdhury SR, Law JX. Current Progress in Tendon and Ligament Tissue Engineering. Tissue Eng Regen Med. 2019;16:549–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Choi YW, Kim YW, Bae SM, Kwak SY, Chun HJ, Tong SY, et al. Identification of differentially expressed genes using annealing control primer-based gene fishing in human squamous cell cervical carcinoma. Clin Oncol R Coll Radiol. 2007;19:308–18.

    PubMed  Google Scholar 

  21. Choi JY, Park CS, Choi J, Rhim H, Chun HJ. Cytotoxic effect of urushiol on human ovarian cancer cells. J Microbiol Biotechnol. 2001;11:399–405.

    CAS  Google Scholar 

  22. Bi YM, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007;13:1219–27.

    CAS  PubMed  Google Scholar 

  23. Rui YF, Lui PP, Li G, Fu SC, Lee YW, Chan KM. Isolation and characterization of multipotent rat tendon-derived stem cells. Tissue Eng Part A. 2010;16:1549–58.

    CAS  PubMed  Google Scholar 

  24. Zhang J, Wang JH. Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC Musculoskelet Disord. 2010;11:10.

    PubMed  PubMed Central  Google Scholar 

  25. Sun J, Mou C, Shi Q, Chen B, Hou X, Zhang W, et al. Controlled release of collagen-binding SDF-1alpha from the collagen scaffold promoted tendon regeneration in a rat Achilles tendon defect model. Biomaterials. 2018;162:22–33.

    CAS  PubMed  Google Scholar 

  26. Chen E, Yang L, Ye C, Zhang W, Ran J, Xue D, et al. An asymmetric chitosan scaffold for tendon tissue engineering: In vitro and in vivo evaluation with rat tendon stem/progenitor cells. Acta Biomater. 2018;73:377–87.

    CAS  PubMed  Google Scholar 

  27. Shim SW, Kwon DY, Park JH, Kim JH, Chun HJ, Koh YJ, et al. Preparation of zwitterionic sulfobetaine end-functionalized poly(ethylene glycol)-b-poly(caprolactone) diblock copolymers and examination of their thermogelling properties. J Polym Sci Part A Polym Chem. 2014;52:2185–91.

    CAS  Google Scholar 

  28. Seo NM, Ko JH, Park YH, Chun HJ. In vitro biocompatibility of PLGA-HA nano-hybrid scaffold. Tissue Eng Regen Med. 2011;8:16–22.

    Google Scholar 

  29. Liu Y, Ramanath HS, Wang DA. Tendon tissue engineering using scaffold enhancing strategies. Trends Biotechnol. 2008;26:201–9.

    CAS  PubMed  Google Scholar 

  30. Ouyang HW, Goh JC, Mo XM, Teoh SH, Lee EH. The efficacy of bone marrow stromal cell-seeded knitted PLGA fiber scaffold for Achilles tendon repair. Ann N Y Acad Sci. 2002;961:126–9.

    CAS  PubMed  Google Scholar 

  31. Rinoldi C, Fallahi A, Yazdi IK, Campos Paras J, Kijenska-Gawronska E, Trujillo-de Santiago G, et al. Mechanical and biochemical stimulation of 3D multilayered scaffolds for tendon tissue engineering. ACS Biomater Sci Eng. 2019;5:2953–64.

    CAS  PubMed  Google Scholar 

  32. Xue Y, Kim HJ, Lee J, Liu Y, Hoffman T, Chen Y, et al. Co-Electrospun silk fibroin and gelatin methacryloyl sheet seeded with mesenchymal stem cells for tendon regeneration. Small. 2022;18:2107714.

    CAS  Google Scholar 

  33. Dang R, Chen L, Sefat F, Li X, Liu S, Yuan X, et al. A natural hydrogel with prohealing properties enhances tendon regeneration. Small. 2022;18:2105255.

    CAS  Google Scholar 

  34. Yao Z, Qian Y, Jin Y, Wang S, Li J, Yuan WE, et al. Biomimetic multilayer polycaprolactone/sodium alginate hydrogel scaffolds loaded with melatonin facilitate tendon regeneration. Carbohyd Polym. 2022;277:118865.

    CAS  Google Scholar 

  35. Yuan Z, Cao F, Gao C, Yang Z, Guo Q, Wang Y. Decellularized human umbilical cord Wharton jelly scaffold improves tendon regeneration in a rabbit rotator cuff tendon defect model. Am J Sports Med. 2022;50:371–83.

    PubMed  Google Scholar 

  36. Banos CC, Thomas AH, Kuo CK. Collagen fibrillogenesis in tendon development: current models and regulation of fibril assembly. Birth Defects Res C Embryo Today. 2008;84:228–44.

    CAS  PubMed  Google Scholar 

  37. Zhang SC, Ju W, Chen XY, Zhao YY, Feng LC, Yin Z, et al. Hierarchical ultrastructure: an overview of what is known about tendons and future perspective for tendon engineering. Bioact Mater. 2022;8:124–39.

    PubMed  Google Scholar 

  38. Bjur D, Alfredson H, Forsgren S. The innervation pattern of the human Achilles tendon: studies of the normal and tendinosis tendon with markers for general and sensory innervation. Cell Tissue Res. 2005;320:201–6.

    PubMed  Google Scholar 

  39. Ahmed IM, Lagopoulos M, McConnell P, Soames RW, Sefton GK. Blood supply of the Achilles tendon. J Orthop Res. 1998;16:591–6.

    CAS  PubMed  Google Scholar 

  40. Screen HRC, Lee DA, Bader DL, Shelton JC. An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. Proc Inst Mech Eng Part H. 2004;218:109–19.

    CAS  Google Scholar 

  41. Raspanti M, Congiu T, Guizzardi S. Structural aspects of the extracellular matrix of the tendon: an atomic force and scanning electron microscopy study. Arch Histol Cytol. 2002;65:37–43.

    PubMed  Google Scholar 

  42. Thornton GM, Hart DA. The interface of mechanical loading and biological variables as they pertain to the development of tendinosis. J Musculoskelet Neuronal Interact. 2011;11:94–105.

    CAS  PubMed  Google Scholar 

  43. Woo SL-Y, Gomez MA, Woo Y-K, Akeson WH. Mechanical properties of tendons and ligaments. Biorheology. 1982;19:397–408.

    CAS  PubMed  Google Scholar 

  44. Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 2004;84:649–98.

    CAS  PubMed  Google Scholar 

  45. Birch HL. Tendon matrix composition and turnover in relation to functional requirements. Int J Exp Pathol. 2007;88:241–8.

    PubMed  PubMed Central  Google Scholar 

  46. Zamboulis DE, Thorpe CT, Kharaz YA, Birch HL, Screen HRC, Clegg PD. Postnatal mechanical loading drives adaptation of tissues primarily through modulation of the non-collagenous matrix. Elife. 2020;9:e58075.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kannus P. Structure of the tendon connective tissue. Scand J Med Sci Sports. 2000;10:312–20.

    CAS  PubMed  Google Scholar 

  48. Franchi M, Trire A, Quaranta M, Orsini E, Ottani V. Collagen structure of tendon relates to function. ScientificWorldJournal. 2007;7:404–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Xia CS, Hong GX, Dou RR, Yang XY. Effects of chitosan on cell proliferation and collagen production of tendon sheath fibroblasts, epitenon tenocytes, and endotenon tenocytes. Chin J Traumatol. 2005;8:369–74.

    CAS  PubMed  Google Scholar 

  50. Li Y, Wu T, Liu S. Identification and Distinction of Tenocytes and Tendon-Derived Stem Cells. Front Cell Dev Biol. 2021;9:629515.

    PubMed  PubMed Central  Google Scholar 

  51. Lui PPY. Markers for the identification of tendon-derived stem cells in vitro and tendon stem cells in situ - update and future development. Stem Cell Res Ther. 2015;6:1–9.

    CAS  Google Scholar 

  52. Ni M, Lui PP, Rui YF, Lee YW, Lee YW, Tan Q, et al. Tendon-derived stem cells (TDSCs) promote tendon repair in a rat patellar tendon window defect model. J Orthop Res. 2012;30:613–9.

    CAS  PubMed  Google Scholar 

  53. Komatsu I, Wang JH, Iwasaki K, Shimizu T, Okano T. The effect of tendon stem/progenitor cell (TSC) sheet on the early tendon healing in a rat Achilles tendon injury model. Acta Biomater. 2016;42:136–46.

    CAS  PubMed  Google Scholar 

  54. Durgam SS, Stewart AA, Sivaguru M, Wagoner Johnson AJ, Stewart MC. Tendon-derived progenitor cells improve healing of collagenase-induced flexor tendinitis. J Orthop Res. 2016;34:2162–71.

    CAS  PubMed  Google Scholar 

  55. Tan Q, Lui PP, Rui YF. Effect of in vitro passaging on the stem cell-related properties of tendon-derived stem cells-implications in tissue engineering. Stem Cells Dev. 2012;21:790–800.

    CAS  PubMed  Google Scholar 

  56. Rossetti L, Kuntz LA, Kunold E, Schock J, Muller KW, Grabmayr H, et al. The microstructure and micromechanics of the tendon-bone insertion. Nat Mater. 2017;16:664–70.

    CAS  PubMed  Google Scholar 

  57. Seo SM, Kim DM, Chung TJ, Yoo JJ, Kim HJ, Chun HJ, et al. Effect of milling time on the viscosity of hydroxyapatite suspension. Curr Appl Phys. 2012;12:S71–5.

    Google Scholar 

  58. Wopenka B, Kent A, Pasteris JD, Yoon Y, Thomopoulos S. The tendon-to-bone transition of the rotator cuff: a preliminary Raman spectroscopic study documenting the gradual mineralization across the insertion in rat tissue samples. Appl Spectrosc. 2008;62:1285–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Charvet B, Ruggiero F, Le Guellec D. The development of the myotendinous junction. A Rev Muscles Ligaments Tendons J. 2012;2:53–63.

    Google Scholar 

  60. Narayanan N, Calve S. Extracellular matrix at the muscle–tendon interface: functional roles, techniques to explore and implications for regenerative medicine. Connect Tissue Res. 2021;62:53–71.

    PubMed  Google Scholar 

  61. Subramanian A, Schilling TF. Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development. 2015;142:4191–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gigante A, Chillemi C, Potter KA, Bertoni-Freddari C, Greco F. Elastic fibers of musculoskeletal tissues in bovine Marfan syndrome: a morphometric study. J Orthop Res. 1999;17:624–8.

    CAS  PubMed  Google Scholar 

  63. Hill JR, Eekhoff JD, Brophy RH, Lake SP. Elastic fibers in orthopedics: Form and function in tendons and ligaments, clinical implications, and future directions. J Orthop Res. 2020;38:2305–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tozer S, Duprez D. Tendon and ligament: development, repair and disease. Birth Defects Res C Embryo Today. 2005;75:226–36.

    CAS  PubMed  Google Scholar 

  65. Leadbetter WB. Cell-matrix response in tendon injury. Clin Sports Med. 1992;11:533–78.

    CAS  PubMed  Google Scholar 

  66. Xu Y, Murrell GA. The basic science of tendinopathy. Clin Orthop Relat Res. 2008;466:1528–38.

    PubMed  PubMed Central  Google Scholar 

  67. Riley G. Tendinopathy–from basic science to treatment. Nat Clin Pract Rheumatol. 2008;4:82–9.

    PubMed  Google Scholar 

  68. Nourissat G, Houard X, Sellam J, Duprez D, Berenbaum F. Use of autologous growth factors in aging tendon and chronic tendinopathy. Front Biosci (Elite Ed). 2013;5:911–21.

    PubMed  Google Scholar 

  69. Freedman BR, Gordon JA, Soslowsky LJ. The Achilles tendon: fundamental properties and mechanisms governing healing. Muscles Ligaments Tendons J. 2014;4:245–55.

    PubMed  PubMed Central  Google Scholar 

  70. Rodrigues MT, Reis RL, Gomes ME. Engineering tendon and ligament tissues: present developments towards successful clinical products. J Tissue Eng Regen Med. 2013;7:673–86.

    CAS  PubMed  Google Scholar 

  71. Siegel L, Vandenakker-Albanese C, Siegel D. Anterior cruciate ligament injuries: anatomy, physiology, biomechanics, and management. Clin J Sport Med. 2012;22:349–55.

    PubMed  Google Scholar 

  72. Childress MA, Beutler A. Management of chronic tendon injuries. Am Fam Phys. 2013;87:486–90.

    Google Scholar 

  73. Bhang SH, Cho SW, La WG, Lee TJ, Yang HS, Sun AY, et al. Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials. 2011;32:2734–47.

    CAS  PubMed  Google Scholar 

  74. Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol. 2013;31:108–15.

    CAS  PubMed  Google Scholar 

  75. Jeong GJ, Im GB, Lee TJ, Kim SW, Jeon HR, Lee DH, et al. Development of a stem cell spheroid-laden patch with high retention at skin wound site. Bioeng Trans Med. 2022;7:e10279.

    CAS  Google Scholar 

  76. Im GB, Jeong GJ, Kim SW, Jang YC, Kim DI, Bhang SH. 2D and 3D co-spatial compartmentalized patch to enhance the therapeutic efficacy of keratinocytes for wound closure. Chem Eng J. 2021;409:128130.

    CAS  Google Scholar 

  77. Kim SW, Im GB, Jeong GJ, Baik S, Hyun J, Kim YJ, et al. Delivery of a spheroids-incorporated human dermal fibroblast sheet increases angiogenesis and M2 polarization for wound healing. Biomaterials. 2021;275:120954.

    CAS  PubMed  Google Scholar 

  78. Im GB, Kim SW, Bhang SH. Fortifying the angiogenic efficacy of adipose derived stem cell spheroids using spheroid compaction. J Ind Eng Chem. 2021;93:228–36.

    CAS  Google Scholar 

  79. Kraus A, Luetzenberg R, Abuagela N, Hollenberg S, Infanger M. Spheroid formation and modulation of tenocyte-specific gene expression under simulated microgravity. Muscles Ligaments Tendons J. 2017;7:411–7.

    PubMed  Google Scholar 

  80. Theiss F, Mirsaidi A, Mhanna R, Kummerle J, Glanz S, Bahrenberg G, et al. Use of biomimetic microtissue spheroids and specific growth factor supplementation to improve tenocyte differentiation and adaptation to a collagen-based scaffold in vitro. Biomaterials. 2015;69:99–109.

    CAS  PubMed  Google Scholar 

  81. Kent RN III, Said M, Busch ME, Poupard ER, Tsai A, Xia J, Matera DL, Wang WY, DePalma SJ, Hiraki HL, Killian ML. Physical and soluble cues enhance tendon progenitor cell invasion into injectable synthetic hydrogels. Adv Funct Mater. 2022;28:2207556.

    Google Scholar 

  82. Citeroni MR, Ciardulli MC, Russo V, Della Porta G, Mauro A, El Khatib M, et al. In vitro innovation of tendon tissue engineering strategies. Int J Mol Sci. 2020;21:6726.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Jaiswal D, Yousman L, Neary M, Fernschild E, Zolnoski B, Katebifar S, et al. Tendon tissue engineering: biomechanical considerations. Biomed Mater. 2020;15:052001.

    CAS  PubMed  Google Scholar 

  84. Dyment NA, Barrett JG, Awad HA, Bautista CA, Banes AJ, Butler DL. A brief history of tendon and ligament bioreactors: Impact and future prospects. J Orthop Res. 2020;38:2318–30.

    PubMed  PubMed Central  Google Scholar 

  85. Qiu Y, Wang X, Zhang Y, Carr AJ, Zhu L, Xia Z, et al. In vitro two-dimensional and three-dimensional tenocyte culture for tendon tissue engineering. J Tissue Eng Regen Med. 2016;10:E216–26.

    CAS  PubMed  Google Scholar 

  86. Xu Y, Dong SW, Zhou Q, Mo XM, Song L, Hou TY, et al. The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering. Biomaterials. 2014;35:2760–72.

    CAS  PubMed  Google Scholar 

  87. Subramony SD, Dargis BR, Castillo M, Azeloglu EU, Tracey MS, Su A, et al. The guidance of stem cell differentiation by substrate alignment and mechanical stimulation. Biomaterials. 2013;34:1942–53.

    CAS  PubMed  Google Scholar 

  88. Chien C, Pryce B, Tufa SF, Keene DR, Huang AH. Optimizing a 3D model system for molecular manipulation of tenogenesis. Connect Tissue Res. 2018;59:295–308.

    CAS  PubMed  Google Scholar 

  89. Testa S, Costantini M, Fornetti E, Bernardini S, Trombetta M, Seliktar D, et al. Combination of biochemical and mechanical cues for tendon tissue engineering. J Cell Mol Med. 2017;21:2711–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Xu Y, Yin H, Chu J, Eglin D, Serra T, Docheva D. An anisotropic nanocomposite hydrogel guides aligned orientation and enhances tenogenesis of human tendon stem/progenitor cells. Biomater Sci. 2021;9:1237–45.

    CAS  PubMed  Google Scholar 

  91. Yin H, Strunz F, Yan Z, Lu J, Brochhausen C, Kiderlen S, et al. Three-dimensional self-assembling nanofiber matrix rejuvenates aged/degenerative human tendon stem/progenitor cells. Biomaterials. 2020;236:119802.

    CAS  PubMed  Google Scholar 

  92. Zhang H, Chen Y, Fan C, Liu R, Huang J, Zhang Y, et al. Cell-subpopulation alteration and FGF7 activation regulate the function of tendon stem/progenitor cells in 3D microenvironment revealed by single-cell analysis. Biomaterials. 2022;280:121238.

    CAS  PubMed  Google Scholar 

  93. Do AV, Khorsand B, Geary SM, Salem AK. 3D Printing of scaffolds for tissue regeneration applications. Adv Healthc Mater. 2015;4:1742–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Merceron TK, Burt M, Seol YJ, Kang HW, Lee SJ, Yoo JJ, et al. A 3D bioprinted complex structure for engineering the muscle-tendon unit. Biofabrication. 2015;7:035003.

    PubMed  Google Scholar 

  95. Jiang XP, Kong YF, Kuss M, Weisenburger J, Haider H, Harms R, et al. 3D bioprinting of multilayered scaffolds with spatially differentiated ADMSCs for rotator cuff tendon-to-bone interface regeneration. Appl Mater Today. 2022;27:101510.

    Google Scholar 

  96. Chae S, Sun Y, Choi YJ, Ha DH, Jeon I, Cho DW. 3D cell-printing of tendon-bone interface using tissue-derived extracellular matrix bioinks for chronic rotator cuff repair. Biofabrication. 2021;13:035005.

    CAS  Google Scholar 

Download references

Acknowledgements

Ministry of Trade, Industry and Energy, 20018324, Heung Jae Chun, 20017645, Dae Hyeok Yang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gun-Jae Jeong or Heung Jae Chun.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, Y.H., Yang, D.H., Uricoli, B. et al. Three-Dimensional Cell Culture System for Tendon Tissue Engineering. Tissue Eng Regen Med 20, 553–562 (2023). https://doi.org/10.1007/s13770-023-00550-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-023-00550-z

Keywords

Navigation