Skip to main content
Log in

Chitosan Nerve Grafts Incorporated with SKP-SC-EVs Induce Peripheral Nerve Regeneration

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

BACKGROUND:

Repair of long-distance peripheral nerve defects remains an important clinical problem. Nerve grafts incorporated with extracellular vesicles (EVs) from various cell types have been developed to bridge peripheral nerve defects. In our previous research, EVs obtained from skin-derived precursor Schwann cells (SKP-SC-EVs) were demonstrated to promote neurite outgrowth in cultured cells and facilitate nerve regeneration in animal studies.

METHODS:

To further assess the functions of SKP-SC-EVs in nerve repair, we incorporated SKP-SC-EVs and Matrigel into chitosan nerve conduits (EV-NG) for repairing a 15-mm long-distance sciatic nerve defect in a rat model. Behavioral analysis, electrophysiological recording, histological investigation, molecular analysis, and morphometric assessment were carried out.

RESULTS:

The results revealed EV-NG significantly improved motor and sensory function recovery compared with nerve conduits (NG) without EVs incorporation. The outgrowth and myelination of regenerated axons were improved, while the atrophy of target muscles induced by denervation was alleviated after EVs addition.

CONCLUSION:

Our data indicated SKP-SC-EVs incorporation into nerve grafts represents a promising method for extended peripheral nerve damage repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kornfeld T, Vogt PM, Radtke C. Nerve grafting for peripheral nerve injuries with extended defect sizes. Wien Med Wochenschr. 2019;169:240–51.

    Article  PubMed  Google Scholar 

  2. Hercher D, Nguyen MQ, Dworak H. Extracellular vesicles and their role in peripheral nerve regeneration. Exp Neurol. 2022;350: 113968.

    Article  CAS  PubMed  Google Scholar 

  3. Patel NP, Lyon KA, Huang JH. An update-tissue engineered nerve grafts for the repair of peripheral nerve injuries. Neural Regen Res. 2018;13:764–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol. 2011;93:204–30.

    Article  CAS  PubMed  Google Scholar 

  5. Pan J, Zhao M, Yi X, Tao J, Li S, Jiang Z, et al. Acellular nerve grafts supplemented with induced pluripotent stem cell-derived exosomes promote peripheral nerve reconstruction and motor function recovery. Bioact Mater. 2022;15:272–87.

    Article  CAS  PubMed  Google Scholar 

  6. Eggers R, de Winter F, Tannemaat MR, Malessy MJA, Verhaagen J. GDNF gene therapy to repair the injured peripheral nerve. Front Bioeng Biotechnol. 2020;8:583184.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rao F, Wang Y, Zhang D, Lu C, Cao Z, Sui J, et al. Aligned chitosan nanofiber hydrogel grafted with peptides mimicking bioactive brain-derived neurotrophic factor and vascular endothelial growth factor repair long-distance sciatic nerve defects in rats. Theranostics. 2020;10:1590–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Su Q, Nasser MI, He J, Deng G, Ouyang Q, Zhuang D, et al. Engineered Schwann cell-based therapies for injury peripheral nerve reconstruction. Front Cell Neurosci. 2022;16:865266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen S, Zhao Y, Yan X, Zhang L, Li G, Yang Y. PAM/GO/gel/SA composite hydrogel conduit with bioactivity for repairing peripheral nerve injury. J Biomed Mater Res A. 2019;107:1273–83.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Z, Jorgensen ML, Wang Z, Amagat J, Wang Y, Li Q, et al. 3D anisotropic photocatalytic architectures as bioactive nerve guidance conduits for peripheral neural regeneration. Biomaterials. 2020;253:120108.

    Article  CAS  PubMed  Google Scholar 

  11. Liu K, Yan L, Li R, Song Z, Ding J, Liu B, et al. 3D printed personalized nerve guide conduits for precision repair of peripheral nerve defects. Adv Sci (Weinh). 2022;9:2103875.

    Article  PubMed  Google Scholar 

  12. Wei S, Hu Q, Ma J, Dai X, Sun Y, Han G, et al. Acellular nerve xenografts based on supercritical extraction technology for repairing long-distance sciatic nerve defects in rats. Bioact Mater. 2022;18:300–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kong Y, Xu J, Han Q, Zheng T, Wu L, Li G, et al. Electrospinning porcine decellularized nerve matrix scaffold for peripheral nerve regeneration. Int J Biol Macromol. 2022;209:1867–81.

    Article  CAS  PubMed  Google Scholar 

  14. Rao F, Yuan Z, Li M, Yu F, Fang X, Jiang B, et al. Expanded 3D nanofibre sponge scaffolds by gas-foaming technique enhance peripheral nerve regeneration. Artif Cells Nanomed Biotechnol. 2019;47:491–500.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang D, Li Z, Shi H, Yao Y, Du W, Lu P, et al. Micropatterns and peptide gradient on the inner surface of a guidance conduit synergistically promotes nerve regeneration in vivo. Bioact Mater. 2022;9:134–46.

    Article  CAS  PubMed  Google Scholar 

  16. Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater. 2020;106:54–69.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao Y, Wang Y, Gong J, Yang L, Niu C, Ni X, et al. Chitosan degradation products facilitate peripheral nerve regeneration by improving macrophage-constructed microenvironments. Biomaterials. 2017;134:64–77.

    Article  CAS  PubMed  Google Scholar 

  18. Jiang Z, Song Y, Qiao J, Yang Y, Zhang W, Liu W, et al. Rat sciatic nerve regeneration across a 10-mm defect bridged by a chitin/CM-chitosan artificial nerve graft. Int J Biol Macromol. 2019;129:997–1005.

    Article  CAS  PubMed  Google Scholar 

  19. Meyer C, Stenberg L, Gonzalez-Perez F, Wrobel S, Ronchi G, Udina E, et al. Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves. Biomaterials. 2016;76:33–51.

    Article  CAS  PubMed  Google Scholar 

  20. Makrygianni EA, Chrousos GP. Extracellular vesicles and the stress system. Neuroendocrinology. 2022. https://doi.org/10.1159/000527182.

  21. Kumar R, Sinha S, Hagner A, Stykel M, Raharjo E, Singh KK, et al. Adult skin-derived precursor Schwann cells exhibit superior myelination and regeneration supportive properties compared to chronically denervated nerve-derived Schwann cells. Exp Neurol. 2016;278:127–42.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu C, Huang J, Xue C, Wang Y, Wang S, Bao S, et al. Skin derived precursor Schwann cell-generated acellular matrix modified chitosan/silk scaffolds for bridging rat sciatic nerve gap. Neurosci Res. 2018;135:21–31.

    Article  CAS  PubMed  Google Scholar 

  23. Yu M, Gu G, Cong M, Du M, Wang W, Shen M, et al. Repair of peripheral nerve defects by nerve grafts incorporated with extracellular vesicles from skin-derived precursor Schwann cells. Acta Biomater. 2021;134:190–203.

    Article  CAS  PubMed  Google Scholar 

  24. Wu X, Wang L, Cong M, Shen M, He Q, Ding F, et al. Extracellular vesicles from skin precursor-derived Schwann cells promote axonal outgrowth and regeneration of motoneurons via Akt/mTOR/p70S6K pathway. Ann Transl Med. 2020;8:1640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bain JR, Mackinnon SE, Hunter DA. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg. 1989;83:129–38.

    Article  CAS  PubMed  Google Scholar 

  26. Hu W, Yang M, Chang J, Shen Z, Gu T, Deng A, et al. Laser doppler perfusion imaging of skin territory to reflect autonomic functional recovery following sciatic nerve autografting repair in rats. Microsurgery. 2012;32:136–43.

    Article  PubMed  Google Scholar 

  27. Yu T, Wen L, He J, Xu Y, Li T, Wang W, et al. Fabrication and evaluation of an optimized acellular nerve allograft with multiple axial channels. Acta Biomater. 2020;115:235–49.

    Article  CAS  PubMed  Google Scholar 

  28. Yu T, Xu Y, Ahmad MA, Javed R, Hagiwara H, Tian X. Exosomes as a promising therapeutic strategy for peripheral nerve injury. Curr Neuropharmacol. 2021;19:2141–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meena P, Kakkar A, Kumar M, Khatri N, Nagar RK, Singh A, et al. Advances and clinical challenges for translating nerve conduit technology from bench to bed side for peripheral nerve repair. Cell Tissue Res. 2021;383:617–44.

    Article  PubMed  Google Scholar 

  30. Podder AK, Mohamed MA, Tseropoulos G, Nasiri B, Andreadis ST. Engineering nanofiber scaffolds with biomimetic cues for differentiation of skin-derived neural crest-like stem cells to Schwann cells. Int J Mol Sci. 2022;23:10834.

  31. Shi H, Gong Y, Qiang L, Li X, Zhang S, Gao J, et al. Derivation of Schwann cell precursors from neural crest cells resident in bone marrow for cell therapy to improve peripheral nerve regeneration. Biomaterials. 2016;89:25–37.

    Article  CAS  PubMed  Google Scholar 

  32. Huang Z, Powell R, Phillips JB, Haastert-Talini K. Perspective on Schwann cells derived from induced pluripotent stem cells in peripheral nerve tissue engineering. Cells. 2020;9:2497.

  33. Chen S, Ikemoto T, Tokunaga T, Okikawa S, Miyazaki K, Yamada S, et al. Newly generated 3D Schwann-like cell spheroids from human adipose-derived stem cells using a modified protocol. Cell Transplant. 2022;31:9636897221093312.

    Article  PubMed  Google Scholar 

  34. Entezari M, Mozafari M, Bakhtiyari M, Moradi F, Bagher Z, Soleimani M. Three-dimensional-printed polycaprolactone/polypyrrole conducting scaffolds for differentiation of human olfactory ecto-mesenchymal stem cells into Schwann cell-like phenotypes and promotion of neurite outgrowth. J Biomed Mater Res A. 2022;110:1134–46.

    Article  CAS  PubMed  Google Scholar 

  35. Horner SJ, Couturier N, Bruch R, Koch P, Hafner M, Rudolf R. hiPSC-Derived Schwann cells influence myogenic differentiation in neuromuscular cocultures. Cells. 2021;10:3292.

  36. Khuong HT, Kumar R, Senjaya F, Grochmal J, Ivanovic A, Shakhbazau A, et al. Skin derived precursor Schwann cells improve behavioral recovery for acute and delayed nerve repair. Exp Neurol. 2014;254:168–79.

    Article  CAS  PubMed  Google Scholar 

  37. Grochmal J, Dhaliwal S, Stys PK, van Minnen J, Midha R. Skin-derived precursor Schwann cell myelination capacity in focal tibial demyelination. Muscle Nerve. 2014;50:262–72.

    Article  CAS  PubMed  Google Scholar 

  38. Fairbairn NG, Meppelink AM, Ng-Glazier J, Randolph MA, Winograd JM. Augmenting peripheral nerve regeneration using stem cells: a review of current opinion. World J Stem Cells. 2015;7:11–26.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu B, Kong Y, Shi W, Kuss M, Liao K, Hu G, et al. Exosomes derived from differentiated human ADMSC with the Schwann cell phenotype modulate peripheral nerve-related cellular functions. Bioact Mater. 2022;14:61–75.

    Article  PubMed  Google Scholar 

  40. Cong M, Shen M, Wu X, Li Y, Wang L, He Q, et al. Improvement of sensory neuron growth and survival via negatively regulating PTEN by miR-21-5p-contained small extracellular vesicles from skin precursor-derived Schwann cells. Stem Cell Res Ther. 2021;12:80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang W, Shen D, Zhang L, Ji Y, Xu L, Chen Z, et al. SKP-SC-EVs mitigate denervated muscle atrophy by inhibiting oxidative stress and inflammation and improving microcirculation. Antioxidants (Basel). 2021;11:66.

  42. Ma Y, Zhou D, Zhang H, Tang L, Qian F, Su J. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles promote the proliferation of Schwann cells by regulating the PI3K/AKT signaling pathway via transferring miR-21. Stem Cells Int. 2021;2021:1496101.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Boecker A, Daeschler SC, Kneser U, Harhaus L. Relevance and recent developments of Chitosan in peripheral nerve surgery. Front Cell Neurosci. 2019;13:104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen W, Chang S, Yang C, Zhou J, Zhang H, Nie K, et al. Schwann celllike cells derived from human amniotic mesenchymal stem cells promote sciatic nerve repair through an exosomeinduced SOX2/FN1 pathway in vitro. Int J Mol Med. 2022; 49.

  45. Kim SM, Lee SK, Lee JH. Peripheral nerve regeneration using a three dimensionally cultured schwann cell conduit. J Craniofac Surg. 2007;18:475–88.

    Article  PubMed  Google Scholar 

  46. Cerqueira SR, Lee YS, Cornelison RC, Mertz MW, Wachs RA, Schmidt CE, et al. Decellularized peripheral nerve supports Schwann cell transplants and axon growth following spinal cord injury. Biomaterials. 2018;177:176–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang CW, Hsueh YY, Huang WC, Patel S, Li S. Multipotent vascular stem cells contribute to neurovascular regeneration of peripheral nerve. Stem Cell Res Ther. 2019;10:234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen J, Ren S, Duscher D, Kang Y, Liu Y, Wang C, et al. Exosomes from human adipose-derived stem cells promote sciatic nerve regeneration via optimizing Schwann cell function. J Cell Physiol. 2019;234:23097–110.

    Article  CAS  PubMed  Google Scholar 

  49. Chen X, Ye K, Yu J, Gao J, Zhang L, Ji X, et al. Regeneration of sciatic nerves by transplanted microvesicles of human neural stem cells derived from embryonic stem cells. Cell Tissue Bank. 2020;21:233–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (82201509), National Key Research and Development Program of China (Grant No. 2017YFA0104700), and the Priority Academic Program Development of Jiangsu High Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

XYZ and MMY: experiment and manuscript drafting. XYZ, MMY, DYC, CYD and QZ: data analysis and figure preparation. XSG and FD: study design and manuscript revision. All authors approved the final manuscript.

Corresponding author

Correspondence to Fei Ding.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical Statement

The animal study was reviewed and approved by the Administration Committee of Experimental Animals of institutional animal care guidelines of Nantong University (IACUC no. S20201025-003) and Jiangsu Province, China.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Yu, M., Chen, D. et al. Chitosan Nerve Grafts Incorporated with SKP-SC-EVs Induce Peripheral Nerve Regeneration. Tissue Eng Regen Med 20, 309–322 (2023). https://doi.org/10.1007/s13770-022-00517-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-022-00517-6

Keywords

Navigation